Reaction rate constant

In chemical kinetics, a reaction rate constant or reaction rate coefficient () is a proportionality constant which quantifies the rate and direction of a chemical reaction by relating it with the concentration of reactants.[1]

For a reaction between reactants A and B to form a product C,

a A + b B → c C

where

A and B are reactants
C is a product
a, b, and c are stoichiometric coefficients,

the reaction rate is often found to have the form:

Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the solution. (For a reaction taking place at a boundary, one would use moles of A or B per unit area instead.)

The exponents m and n are called partial orders of reaction and are not generally equal to the stoichiometric coefficients a and b. Instead they depend on the reaction mechanism and can be determined experimentally.

Sum of m and n, that is, (m + n) is called the overall order of reaction.

Elementary steps

For an elementary step, there is a relationship between stoichiometry and rate law, as determined by the law of mass action. Almost all elementary steps are either unimolecular or bimolecular. For a unimolecular step

A → P

the reaction rate is described by , where is a unimolecular rate constant. Since a reaction requires a change in molecular geometry, unimolecular rate constants cannot be larger than the frequency of a molecular vibration. Thus, in general, a unimolecular rate constant has an upper limit of k1 ≤ ~1013 s−1.

For a bimolecular step

A + B → P

the reaction rate is described by , where is a bimolecular rate constant. Bimolecular rate constants have an upper limit that is determined by how frequently molecules can collide, and the fastest such processes are limited by diffusion. Thus, in general, a bimolecular rate constant has an upper limit of k2 ≤ ~1010 M−1s−1.

For a termolecular step

A + B + C → P

the reaction rate is described by , where is a termolecular rate constant.

There are few examples of elementary steps that are termolecular or higher order, due to the low probability of three or more molecules colliding in their reactive conformations and in the right orientation relative to each other to reach a particular transition state.[2] There are, however, some termolecular examples in the gas phase. Most involve the recombination of two atoms or small radicals or molecules in the presence of an inert third body which carries off excess energy, such as O + O
2
+ N
2
O
3
+ N
2
. One well-established example is the termolecular step 2 I + H
2
→ 2 HI in the hydrogen-iodine reaction.[3][4][5] In cases where a termolecular step might plausibly be proposed, one of the reactants is generally present in high concentration (e.g., as a solvent or diluent gas).[6]

Relationship to other parameters

For a first-order reaction (including a unimolecular one-step process), there is a direct relationship between the unimolecular rate constant and the half-life of the reaction: . Transition state theory gives a relationship between the rate constant and the Gibbs free energy of activation , a quantity that can be regarded as the free energy change needed to reach the transition state. In particular, this energy barrier incorporates both enthalpic () and entropic () changes that need to be achieved for the reaction to take place:[7][8] The result from transition state theory is , where h is the Planck constant and R the molar gas constant. As useful rules of thumb, a first-order reaction with a rate constant of 10−4 s−1 will have a half-life (t1/2) of approximately 2 hours. For a one-step process taking place at room temperature, the corresponding Gibbs free energy of activation (ΔG) is approximately 23 kcal/mol.

Dependence on temperature

The Arrhenius equation is an elementary treatment that gives the quantitative basis of the relationship between the activation energy and the reaction rate at which a reaction proceeds. The rate constant as a function of thermodynamic temperature is then given by:

The reaction rate is given by:

where Ea is the activation energy, and R is the gas constant, and m and n are experimentally determined partial orders in [A] and [B], respectively. Since at temperature T the molecules have energies according to a Boltzmann distribution, one can expect the proportion of collisions with energy greater than Ea to vary with eEaRT. The constant of proportionality A is the pre-exponential factor, or frequency factor (not to be confused here with the reactant A) takes into consideration the frequency at which reactant molecules are colliding and the likelihood that a collision leads to a successful reaction. Here, A has the same dimensions as an (m + n)-order rate constant (see Units below).

Another popular model that is derived using more sophisticated statistical mechanical considerations is the Eyring equation from transition state theory:

where ΔG is the free energy of activation, a parameter that incorporates both the enthalpy and entropy change needed to reach the transition state. The temperature dependence of ΔG is used to compute these parameters, the enthalpy of activation ΔH and the entropy of activation ΔS, based on the defining formula ΔG = ΔHTΔS. In effect, the free energy of activation takes into account both the activation energy and the likelihood of successful collision, while the factor kBT/h gives the frequency of molecular collision.

The factor (c)1-M ensures the dimensional correctness of the rate constant when the transition state in question is bimolecular or higher. Here, c is the standard concentration, generally chosen based on the unit of concentration used (usually c = 1 mol L−1 = 1 M), and M is the molecularity of the transition state. Lastly, κ, usually set to unity, is known as the transmission coefficient, a parameter which essentially serves as a "fudge factor" for transition state theory.

The biggest difference between the two theories is that Arrhenius theory attempts to model the reaction (single- or multi-step) as a whole, while transition state theory models the individual elementary steps involved. Thus, they are not directly comparable, unless the reaction in question involves only a single elementary step.

Finally, in the past, collision theory, in which reactants are viewed as hard spheres with a particular cross-section, provided yet another common way to rationalize and model the temperature dependence of the rate constant, although this approach has gradually fallen into disuse. The equation for the rate constant is similar in functional form to both the Arrhenius and Eyring equations:

where P is the steric (or probability) factor and Z is the collision frequency, and ΔE is energy input required to overcome the activation barrier. Of note, , making the temperature dependence of k different from both the Arrhenius and Eyring models.

Comparison of models

All three theories model the temperature dependence of k using an equation of the form

for some constant C, where α = 0, 12, and 1 give Arrhenius theory, collision theory, and transition state theory, respectively, although the imprecise notion of ΔE, the energy needed to overcome the activation barrier, has a slightly different meaning in each theory. In practice, experimental data does not generally allow a determination to be made as to which is "correct" in terms of best fit. Hence, all three are conceptual frameworks that make numerous assumptions, both realistic and unrealistic, in their derivations. As a result, they are capable of providing different insights into a system.[9]

Units

The units of the rate constant depend on the overall order of reaction.[10]

If concentration is measured in units of mol·L−1 (sometimes abbreviated as M), then

  • For order (m + n), the rate constant has units of mol1−(m+n)·L(m+n)−1·s−1 (or M1−(m+n)·s−1)
  • For order zero, the rate constant has units of mol·L−1·s−1 (or M·s−1)
  • For order one, the rate constant has units of s−1
  • For order two, the rate constant has units of L·mol−1·s−1 (or M−1·s−1)
  • For order three, the rate constant has units of L2·mol−2·s−1 (or M−2·s−1)
  • For order four, the rate constant has units of L3·mol−3·s−1 (or M−3·s−1)

Plasma and gases

Calculation of rate constants of the processes of generation and relaxation of electronically and vibrationally excited particles are of significant importance. It is used, for example, in the computer simulation of processes in plasma chemistry or microelectronics. First-principle based models should be used for such calculation. It can be done with the help of computer simulation software.

Rate constant calculations

Rate constant can be calculated for elementary reactions by molecular dynamics simulations. One possible approach is to calculate the mean residence time of the molecule in the reactant state. Although this is feasible for small systems with short residence times, this approach is not widely applicable as reactions are often rare events on molecular scale. One simple approach to overcome this problem is Divided Saddle Theory.[11] Such other methods as the Bennett Chandler procedure,[12][13] and Milestoning[14] have also been developed for rate constant calculations.

Divided saddle theory

The theory is based on the assumption that the reaction can be described by a reaction coordinate, and that we can apply Boltzmann distribution at least in the reactant state. A new, especially reactive segment of the reactant, called the saddle domain, is introduced, and the rate constant is factored:

where αSD
RS
is the conversion factor between the reactant state and saddle domain, while kSD is the rate constant from the saddle domain. The first can be simply calculated from the free energy surface, the latter is easily accessible from short molecular dynamics simulations [11]

See also

References

  1. ^ "Chemical Kinetics Notes". www.chem.arizona.edu. Retrieved 5 May 2018.
  2. ^ Lowry, Thomas H. (1987). Mechanism and theory in organic chemistry. Richardson, Kathleen Schueller (3rd ed.). New York: Harper & Row. ISBN 978-0060440848. OCLC 14214254.
  3. ^ Moore, John W.; Pearson, Ralph G. (1981). Kinetics and Mechanism (3rd ed.). John Wiley. pp. 226–7. ISBN 978-0-471-03558-9.
  4. ^ The reactions of nitric oxide with the diatomic molecules Cl
    2
    , Br
    2
    or O
    2
    (e.g., 2 NO + Cl
    2
    → 2 NOCl, etc.) have also been suggested as examples of termolecular elementary processes. However, other authors favor a two-step process, each of which is bimolecular: (NO + Cl
    2
    NOCl
    2
    , NOCl
    2
    + NO → 2 NOCl). See: Compton, R.G.; Bamford, C. H.; Tipper, C.F.H., eds. (2014) [1972]. "5. Reactions of the Oxides of Nitrogen §5.5 Reactions with Chlorine". Reactions of Non-metallic Inorganic Compounds. Comprehensive Chemical Kinetics. Vol. 6. Elsevier. p. 174. ISBN 978-0-08-086801-1.
  5. ^ Sullivan, John H. (1967-01-01). "Mechanism of the Bimolecular Hydrogen—Iodine Reaction". The Journal of Chemical Physics. 46 (1): 73–78. Bibcode:1967JChPh..46...73S. doi:10.1063/1.1840433. ISSN 0021-9606.
  6. ^ Kotz, John C. (2009). Chemistry & chemical reactivity. Treichel, Paul., Townsend, John R. (7th ed.). Belmont, Calif.: Thomson Brooks/ Cole. p. 703. ISBN 9780495387039. OCLC 220756597.
  7. ^ Laidler, Keith J. (1987). Chemical Kinetics (3rd ed.). Harper & Row. p. 113. ISBN 0-06-043862-2.
  8. ^ Steinfeld, Jeffrey I.; Francisco, Joseph S.; Hase, William L. (1999). Chemical Kinetics and Dynamics (2nd ed.). Prentice Hall. p. 301. ISBN 0-13-737123-3.
  9. ^ Carpenter, Barry K. (1984). Determination of organic reaction mechanisms. New York: Wiley. ISBN 978-0471893691. OCLC 9894996.
  10. ^ Blauch, David. "Differential Rate Laws". Chemical Kinetics.
  11. ^ a b Daru, János; Stirling, András (2014). "Divided Saddle Theory: A New Idea for Rate Constant Calculation" (PDF). J. Chem. Theory Comput. 10 (3): 1121–1127. doi:10.1021/ct400970y. PMID 26580187.
  12. ^ Chandler, David (1978). "Statistical mechanics of isomerization dynamics in liquids and the transition state approximation". J. Chem. Phys. 68 (6): 2959. Bibcode:1978JChPh..68.2959C. doi:10.1063/1.436049.
  13. ^ Bennett, C. H. (1977). Christofferson, R. (ed.). Algorithms for Chemical Computations, ACS Symposium Series No. 46. Washington, D.C.: American Chemical Society. ISBN 978-0-8412-0371-6.
  14. ^ West, Anthony M.A.; Elber, Ron; Shalloway, David (2007). "Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide". The Journal of Chemical Physics. 126 (14): 145104. Bibcode:2007JChPh.126n5104W. doi:10.1063/1.2716389. PMID 17444753.

Read other articles:

WTA-toernooi van Washington 2023 Winnares in het enkelspel, Cori Gauff Officiële naam Mubadala Citi DC Open Editie 2023 (11e editie) Stad, land Washington, Verenigde Staten Locatie William H.G. FitzGerald Tennis Center in Rock Creek Park Datum 31 juli–6 augustus Auspiciën WTA Categorie WTA 500 Prijzengeld US$ 780.637 Deelnemers 28 enkel, 16 kwal. / 16 dubbel Ondergrond hardcourt, buiten Tegelijk met ATP-toernooi van Washington Winnaar enkel Vlag van Verenigde Staten Cori Ga...

 

Constituency of the Andhra Pradesh Legislative Assembly, India PrathipaduConstituency for the Andhra Pradesh Legislative AssemblyLocation of Prathipadu Assembly constituency within Andhra PradeshConstituency detailsCountryIndiaRegionSouth IndiaStateAndhra PradeshDistrictKakinadaLS constituencyKakinadaEstablished1951Total electors202,743ReservationNoneMember of Legislative Assembly15th Andhra Pradesh Legislative AssemblyIncumbent Sri Purnachandra Prasad Parvatha PartyYSR Congress PartyElected ...

 

Ferenc Molnár, 2017 Ferenc Molnár ([ˈfɛrɛnʦ ˈkɑɾɑmɛl ˈmolnaːr]; * 1. Februar 1982 in Szolnok, Ungarn), besser bekannt unter seinem Künstlername Caramel, ist ein ungarischer Sänger und Fonogram-Preisträger. Als zweimaliger Sieger bei der auf TV2 laufenden Talentshow Megasztár hat er in Ungarn viel an Popularität gewonnen. Inhaltsverzeichnis 1 Diskografie 1.1 Alben 2 Quellen 3 Weblinks Diskografie Alben Jahr Titel Höchstplatzierung, Gesamtwochen, AuszeichnungChartsChartplatzi...

هنري فرايدلاندر معلومات شخصية الميلاد 24 سبتمبر 1930  برلين  الوفاة 17 أكتوبر 2012 (82 سنة) [1]  بانجور  مكان الاعتقال معسكر أوشفيتز بيركينومعسكر الاعتقال نوينجامىحي اليهود وودج  مواطنة الولايات المتحدة ألمانيا  الحياة العملية المواضيع مؤرخ،  وتاريخ،  وال...

 

Italian singer and actress (1943–2021) Raffaella CarràBornRaffaella Maria Roberta Pelloni(1943-06-18)18 June 1943Bologna, Kingdom of ItalyDied5 July 2021(2021-07-05) (aged 78)Rome, ItalyResting placePorto Santo Stefano cemeteryOccupationsSingeractressdancertelevision presenterradio presentermodelYears active1952–2021Musical careerGenres Europop Eurodisco Latin pop Instrument(s)VocalsLabels RCA CGD CBS Hispavox Musical artist Raffaella Maria Roberta Pelloni (18 June 1943 – 5 J...

 

Dag van de Doden Figuren van papiermaché Datum 1 en 2 november (Allerheiligen en Allerzielen) De Dag van de Doden (Spaans: Día de Muertos of Día de los Muertos[1]) is een Mexicaanse feest- en herdenkingsdag. De dag is een combinatie van precolumbiaanse en katholieke tradities.[2] Deze traditie vindt elk jaar plaats op 1 en 2 november, dus op Allerheiligen en Allerzielen. In mindere mate wordt de Dag van de Doden ook in de rest van Latijns-Amerika, de Verenigde Staten en de ...

أفيون كروكيت معلومات شخصية الميلاد 12 أغسطس 1974 (العمر 49 سنة)فاييتفيل، الولايات المتحدة مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة فايتفيل الحكومية  المهنة ممثل، منتج وكوميدي اللغة الأم الإنجليزية  اللغات الإنجليزية  سنوات النشاط 1995-الآن المواقع ا

 

  لمعانٍ أخرى، طالع الحاسة السادسة (توضيح). الحاسة السادسةThe Sixth Sense (بالإنجليزية) الشعارمعلومات عامةالصنف الفني فيلم رعب[1][2] — فيلم إثارة — فيلم دراما — فيلم أشباح تاريخ الصدور 1999 2 أغسطس 1999[3] 30 ديسمبر 1999[4] (ألمانيا)5 يناير 2000 (فرنسا) مدة العرض 107 دقيقة ال...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. أبيجو (بالإنجليزية: Abeguwo)‏ في أساطير ميلانيزيا وغانا الجديدة هي إلهة المطر التي يتحول بولها إلى نداوة.[1] مراجع ^ Abeguwo. مؤرشف من الأصل في 2019-01-16. اطلع عليه بتاريخ 25–7–2019.{{است...

Arrandene Open Space Featherstone Hill Arrandene Open Space and Featherstone Hill is a 25 hectare[1] Site of Metropolitan Importance for Nature Conservation in Mill Hill in the London Borough of Barnet. Arrandene Open Space is a large area of pasture divided by ancient hedgerows, and it is one of London's rare traditionally managed old hay meadows. It contains numerous uncommon plant species characteristic of unimproved grassland, such as greater bird's-foot trefoil, common knapweed a...

 

Men's basketball club in Aleppo, Syria Al-Ittihad Ahli of Aleppo Sports ClubNicknameThe Red Castle Halab Al-AhliLeaguesSyrian Basketball LeagueFounded1951HistoryAl-Ahli Aleppo1951–1972 Al-Ittihad Aleppo1972–2022Al-Ittihad Ahli Aleppo2022–ArenaAl-Hamadaniah Sports ArenaCapacity7,964LocationAleppo, SyriaTeam colorsRed and White    Main sponsorKatarji Group, SyriatelPresidentRasen MartiniHead coachGhassan Sarkis[1]2021–22 positionSyrian League, 1st of 12Championships(1)...

 

NinjaTel Van outside the DEF CON 20 Ninja Party The NinjaTel Van is a 2001 Ford Econoline E250 van, designed and converted by Bob saberfire Bristow and Colleen Phar Campbell into the base of operation for NinjaTel.[citation needed] From July 26 to July 29, 2012 the Ninja Networks team created and operated a mobile cell phone network from a van placed in the Vendor[1] area of DEF CON 20, at the Rio Hotel/Casino in Las Vegas, and the Ninja Party, at Rumor Boutique Hotel in Las V...

Book by E.V. Timms The Beckoning Shore First editionAuthorE. V. TimmsCountryAustraliaLanguageEnglishSeriesGreat South Land SagaPublisherAngus and RobertsonPublication date1950 The Beckoning Shore is a novel by E. V. Timms. It was popular, selling 10,000 copies within its first year.[1] The novel was adapted for radio in 1954. References ^ Life and Letters. The West Australian. Perth: National Library of Australia. 30 August 1952. p. 24. Retrieved 15 October 2014. External links T...

 

American television channel tbs redirects here. For the company, see Turner Broadcasting System. For other television stations and channels branded as TBS, see TBS (disambiguation) § Entertainment. Television channel TBSTypeBasic cable networkCountryUnited StatesBroadcast areaUnited StatesHeadquartersAtlanta, Georgia, U.S.ProgrammingLanguage(s)EnglishSpanish (with SAP audio track)Picture format1080i (HDTV)(downscaled to letterboxed 480i for the SDTV feed)OwnershipOwnerWarner Bros. Disco...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Untuk kegunaan lain dari Grain in Ear, lihat Mangzhong. Grain in EarGrain in Ear poster (2005)SutradaraZhang LuProduser Choi Do-yeong Ditulis oleh Zhang Lu PemeranLiu LianjiJin BoZhu GuangxuanWang TonghuiSinematograferLiu YonghongPenyuntingKim Sun-min...

Suratan puniki kasurat nganggén basa alus. Koordinat: 3°19′16″N 117°34′09″E / 3.3211541916746135°N 117.56924394365772°E / 3.3211541916746135; 117.56924394365772 Karang Anyar PantaiKalurahanKantor Kelurahan Karang Anyar PantaiPeta genah Kelurahan Karang Anyar PantaiNegara IndonésiaPropinsiKalimantan SelatanKotaTarakanKecamatanTarakan BaratKode Kéméndagri65.71.01.1003 Kode BPS6571030004 Karang Anyar Pantai (aksara Bali: karaŋ​hañaŕ​pantai) in...

 

Perera Alministración País EspañaAutonomía Principáu d'AsturiesProvincia provincia d'AsturiesConceyu La RiberaPartíu xudicial UviéuTipu d'entidá parroquia d'AsturiesXeografíaCoordenaes 43°19′00″N 5°51′26″W / 43.31665°N 5.85736°O / 43.31665; -5.85736 PereraPerera (Asturies)Altitú 292 m[1]Llenda con Ferreros, Teyego, Lluniego, Santolaya, San Isteba y PereraDemografíaPoblación 342 hab. (2023)Porcentaxe 18.42% de La Ribera0.03% de&...

 

American politician (born 1952) Steve RothmanMember of the U.S. House of Representativesfrom New Jersey's 9th districtIn officeJanuary 3, 1997 – January 3, 2013Preceded byRobert TorricelliSucceeded byConstituency abolishedMayor of Englewood, New JerseyIn office1983–1989Preceded bySondra GreenbergSucceeded byDonald Aronson Personal detailsBornSteven Richard Rothman (1952-10-14) October 14, 1952 (age 71)Englewood, New Jersey, U.S.Political partyDemocraticSpouse Jen...

Pour les articles homonymes, voir Médoc (homonymie). Cissac-Médoc Église de Cissac-Médoc. Blason Administration Pays France Région Nouvelle-Aquitaine Département Gironde Arrondissement Lesparre-Médoc Intercommunalité Communauté de communes Médoc Cœur de Presqu'île Maire Mandat Jean Mincoy 2020-2026 Code postal 33250 Code commune 33125 Démographie Gentilé Cissacais Populationmunicipale 2 262 hab. (2021 ) Densité 96 hab./km2 Géographie Coordonnées 45° 13...

 

Paghimo ni bot Lsjbot. 32°18′09″N 81°41′57″E / 32.3025°N 81.6992°E / 32.3025; 81.6992 Cobzha (Cuozha) 错扎 Tumoy sa bukid Nasod  Pangmasang Republika sa Tśina Lalawigan Tibet Autonomous Region Gitas-on 4,780 m (15,682 ft) Tiganos 32°18′09″N 81°41′57″E / 32.3025°N 81.6992°E / 32.3025; 81.6992 [saysay 1] Timezone CT (UTC+8) GeoNames 7929711 Tumoy sa bukid ang Cobzha (Chinese: Cuozha, 错扎) sa ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!