RIPK1

RIPK1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesRIPK1, RIP, RIP1, RIP-1, receptor interacting serine/threonine kinase 1, IMD57, AIEFL
External IDsOMIM: 603453; MGI: 108212; HomoloGene: 2820; GeneCards: RIPK1; OMA:RIPK1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_009068
NM_001359997

RefSeq (protein)

NP_033094
NP_001346926

Location (UCSC)Chr 6: 3.06 – 3.12 MbChr 13: 34.19 – 34.22 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions in a variety of cellular pathways related to both cell survival and death. In terms of cell death, RIPK1 plays a role in apoptosis, necroptosis, and PANoptosis Some of the cell survival pathways RIPK1 participates in include NF-κB, Akt, and JNK.[5]

RIPK1 is an enzyme that in humans is encoded by the RIPK1 gene, which is located on chromosome 6.[6][7][8] This protein belongs to the Receptor Interacting Protein (RIP) kinases family, which consists of 7 members, RIPK1 being the first member of the family.[9]

Structure

RIPK1 protein is composed of 671 amino acids, and has a molecular weight of about 76 kDa. It contains a serine/threonine kinase domain (KD) in the 300 aa N-Terminus, a death domain (DD) in the 112 aa C-Terminus, and a central region between the KD and DD called intermediate domain (ID).

  • The kinase domain plays different roles in cell survival and is important in necroptosis induction. RIP interacts with TRAF2 via the kinase domain. The KD can also interact with Necrostatin-1,[10] which is an allosteric inhibitor of RIPK1 kinase activity. Overexpression of RIP lacking kinase activity can activate NF-kB.
  • The death domain is homologous to the DD of other receptors such as Fas, TRAILR2 (DR5), TNFR1 and TRAILR1 (DR4), so it can bind to these receptors, as well as TRADD and FADD in the TNFR1 signalling complex. Overexpression of RIP can induce apoptosis and can activate NF-kB, but overexpression of the RIP death domain can block NF-kB activation by TNF-R1.[11]
  • The intermediate domain is important for NF-kB activation and (RHIM)-dependent signalling. Via the intermediate domain, RIP can interact with TRAF2, NEMO, RIPK3, ZBP1, OPTN[12] and other small molecules and proteins, depending on cellular context.

.

Structural domains of RIPK1

Function

Although, RIPK1 has been primarily studied in the context of TNFR signaling, RIPK1 is also activated in response to diverse stimuli.[13]

The kinase domain, while important for necroptotic (programmed necrotic) functions, appears dispensable for pro-survival roles. Kinase activity of RIPK1 is also required for RIPK1-dependent apoptosis in conditions of IAP1/2 depletion, RIPK3 depletion or MLKL depletion.[14][15] Also, proteolytic processing of RIPK1, through both caspase-dependent and -independent mechanisms, triggers lethality that is dependent on the generation of one or more specific C-terminal cleavage product(s) of RIPk1 upon stress.

Role in cell survival

It has been shown that cell survival can be regulated through different RIPK1-mediated pathways that ultimately result in the expression of NF-kB, a protein complex known to regulate transcription of DNA and thus, related to survival processes.[16]

Receptor-mediated signalling

The most well-known pathway of NF-kB activation is that mediated by the death receptor TNFR1, which starts as in the necroptosis pathway with the assembly of TRADD, RIPK1, TRAF2 and clAP1 in the lipid rafts of the plasma membrane (complex I is formed). In survival signalling, RIPK1 is then polyubiquitinated, allowing NEMO (Necrosis Factor – kappa – B essential modulator) to bind to the IkB kinase or IKK complex.[17] To activate IKK, TAB2 and TAB3 adaptor proteins recruit TAK1 or MEKK3, which phosphorylate the complex. This results in the phosphorylation of the NF-kB inhibitors by the activated IKK complex, which in turn triggers their polyubiquitination and posterior degradation in the 26S proteasome.

As a result, NF-kB can now migrate to the nucleus where it will control DNA transcription by binding itself to the promoters of specific genes. Some of those genes are thought to have anti-apoptotic properties as well as to promote proteasomal degradation of RIPK1, resulting in a self-regulatory cycle.

While being in complex I, RIPK1 has also been proved to play a role in the activation of MAP (mitogen-activated protein) kinases such as JNK, ERK and p38. In particular, JNK can be found in both cell death and survival pathways, with its role in the cell death process being suppressed by activated NF-kB.[5]

Cell survival signalling can also be mediated by TLR-3 (toll-like receptors) and TLR-4. In here, RIPK1 is recruited to the receptors where it is phosphorylated and polyubiquitinated. This results in the recruit of the IKK complex activating proteins (TAK1, TAB1 and TAB2) so eventually NF-kB can now too migrate to the nucleus. RIPK2 is involved in this TLR-mediated signalling, which suggests that there might be a regulation of cell survival or death (the two possible outcomes) through the mutual interaction between the two RIPK family members.[5][9]

Genotoxic stress-mediated activation

Upon DNA damage, RIPK1 mediates another NF-kB activation pathway where two simultaneous and exclusive processes occur. A pro-apoptotic complex is created while RIPK1 also mediates the interaction between PIDD, NEMO and IKK subunits that will eventually result in the IKK complex activation after interaction with ATM kinase (a DNA double-strand breaks stimulated protein). The interaction between RIPK1 and PIDD through their death domains is thought to promote cell survival to neutralize this pro-apoptotic complex.[9]

Others

It has been observed that RIPK1 may also interact with IGF-1R (insulin-like growth factor 1 receptor) to activate JNK (c-Jun N-terminal Kinases), it may be related to epidermal growth factor receptor signalling and it is largely expressed in glioblastoma cells, suggesting that RIPK1 is indeed involved in cell survival and proliferation processes.[5]

Role in cell death

Necroptosis

Necroptosis is a programmed form of necrosis which starts with the assembly of the TNF (tumor necrosis factor) ligand to its membrane receptor, the TNFR (tumor necrosis factor receptor). Once activated, the intracellular domain of TNFR starts the recruitment of the adaptor TNFR-1-associated death domain protein TRADD, which recruits RIPK1 and two ubiquitin ligases: TRAF2 and clAP1. This complex is called the TNFR-1 complex I.[18]

Complex-I is then modified by the IAPs (Inhibitor of Apoptosis Proteins) and the LUBAC (Linear Ubiquitination Assembly Complex), which generate linear ubiquitin linkages. The ubiquitination of complex-I leads to the activation of NF-κB, which in turn activates the expression of FLICE-like inhibitory protein FLIP. FLIP then binds to caspase-8, forming a caspase-8 FLIP heterodimer in the cytosol that disrupts the activity of caspase-8 and prevents caspase-8 mediated apoptosis from taking place.[19]

The assembly of complex II-b then starts in the cytosol. This new complex contains the caspase-8 FLIP heterodimer as well as RIPK1 and RIPK3. Caspase inhibition within this complex allows RIPK1 and RIPK3 to autotransphosphorylate each other, forming another complex called the necrosome.[20] The necrosome starts recruiting MLKL (Mixed Lineage Kinase Domain Like protein), which is phosphorylated by RIPK3 and immediately translocates to lipid rafts inside the plasma membrane. This leads to the formation of pores in the membrane, allowing the sodium influx to increase -and consequently the osmotic pressure-, which eventually causes cell membrane rupture.[20]

Apoptosis

The apoptotic extrinsic pathway starts with the formation of the TNFR-1 complex-I, which contains TRADD, RIPK1, and two ubiquitin ligases:TRAF2 and clAP1.[21][18]

Unlike the necroptotic pathway, this pathway doesn't include the inhibition of caspase-8. Thus, in absence of NF-κB function, FLIP is not produced, and therefore active caspase-8 assembles with FADD, RIPK1 and RIPK3 in the cytosol, forming what is known as complex IIa.[20]

Caspase-8 activates Bid, a protein that binds to the mitochondrial membrane, allowing the release of intermembrane mitochondrial molecules such as cytochrome c. Cytochrome c then assembles with Apaf 1 and ATP molecules, forming a complex called apoptosome. The activation of caspase 3 and 9 by the apoptosome starts a proteolitic cascade that eventually leads to the degradation of organelles and proteins, and the fragmentation of the DNA, inducing apoptotic cell death.

PANoptosis

PANoptosis is a prominent innate immune, inflammatory, and lytic cell death pathway initiated by innate immune sensors and driven by caspases and receptor-interacting protein kinases (RIPKs) through PANoptosomes.[22][23] PANoptosomes are multi-protein complexes assembled by germline-encoded pattern-recognition receptor(s) (PRRs) (innate immune sensor(s)) in response to pathogens, including bacterial, viral, and fungal infections, as well as pathogen-associated molecular patterns, damage-associated molecular patterns, cytokines, and homeostatic changes during infections, inflammatory conditions, and cancer.[24][25][26][27][28][29][30][31][32][33][34][35][36][37] RIPK1 has been identified as a component of multiple PANoptosomes, including the ZBP1-PANoptosome and the AIM2-PANoptosome. Additionally, RIPK1 also drives the formation of the RIPK1-PANoptosome to induce PANoptosis in response to TAK1 inhibition.[38][39][40] TAK1 is a central regulator in cell death that prevents spontaneous NLRP3 inflammasome activation and PANoptosis in a RIPK1-dependent manner.[38][39][40] Additionally, the Gram-negative bacterium Yersinia produces YopJ, which inhibits TAK1, and Yersinia infection can trigger the activation of the RIPK1-PANoptosome.[40]

Neurodegenerative diseases

Alzheimer's disease

Patients with Alzheimer's disease, a neurodegenerative disease characterized by a cognitive deterioration and a behavioural disorder, experience a chronic brain inflammation which leads to the atrophy of several brain regions.[1]

A sign of this inflammation is an increased number of microglia, a type of glial cells located in the brain and the spinal cord. RIPK1 is known to appear in larger quantities in brains from those affected with AD.[41] This enzyme regulates not only necroptosis, but cell inflammation as well, and as a result it is involved in the regulation of microglial functions, specially those associated with the appearance and development of neurodegenerative diseases such as AD.[41]

Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is characterized by the degeneration of motor neurons which leads to the progressive loss of mobility. Consequently, patients are unable to do any physical activity due to the atrophy of their muscles.[42]

The optineurin gene (OPTN) and its mutation are known to be involved in ALS. When the organism loses OPTN, the dysmyelination of axons and its degeneration start. The degeneration of the axons is produced by several components from the Central Nervous System (CNS) including RIPK1 and another enzyme from the Receptor Interacting Protein kinases family, RIPK3, as well as other proteins such as MLKL.[43]

Once RIPK1, RIPK3 and MLKL have contributed to the dysmyelination and the consequent degeneration of axons, the nerve impulse can't to go from one neuron to another due to the lack of myelin, which leads to the consequent mobility problems as the nerve impulse does not arrive to its final destination.[44]

Multiple sclerosis

RIPK1 plays a role in the activation of multiple sclerosis and its progression driving neuroinflammatory signaling in microglia And astrocytes. SAR443820 is an investigational RIPK1 inhibitor that may be useful in the management of multiple sclerosis.[45]

Autoinflamatory disease

An autoinflammatory disease characterised by recurrent fevers and lymphadenopathy has been associated with mutations in this gene.[46]

CRIA syndrome (Cleavage-resistant RIPK1-induced autoinflammatory syndrome) is a disorder caused by specific mutations of the RIPK1 gene. Symptoms include "fevers, swollen lymph nodes, severe abdominal pain, gastrointestinal problems, headaches and, in some cases, abnormally enlarged spleen and liver".[47]

Interactions

RIPK1 has been shown to interact with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000137275Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000021408Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c d e f Lin Y (2014). "RIP1-Mediated Signaling Pathways in Cell Survival and Death Control". In Shen HM, Vandenabeele P (eds.). Necrotic Cell Death. Springer New York. pp. 23–43. doi:10.1007/978-1-4614-8220-8_2. ISBN 978-1-4614-8219-2.
  6. ^ Stanger BZ, Leder P, Lee TH, Kim E, Seed B (May 1995). "RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death". Cell. 81 (4): 513–523. doi:10.1016/0092-8674(95)90072-1. PMID 7538908. S2CID 6525044.
  7. ^ a b c d Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (April 1996). "TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex". Immunity. 4 (4): 387–396. doi:10.1016/S1074-7613(00)80252-6. PMID 8612133.
  8. ^ "Entrez Gene: RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1".
  9. ^ a b c d Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (March 2007). "RIP1, a kinase on the crossroads of a cell's decision to live or die". Cell Death and Differentiation. 14 (3): 400–410. doi:10.1038/sj.cdd.4402085. PMID 17301840. S2CID 8846685.
  10. ^ Vandenabeele P, Grootjans S, Callewaert N, Takahashi N (February 2013). "Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models". Cell Death and Differentiation. 20 (2): 185–187. doi:10.1038/cdd.2012.151. PMC 3554339. PMID 23197293.
  11. ^ Online Mendelian Inheritance in Man (OMIM): Receptor-interacting serine/threonine kinase 1 (RIPK1) - 603453
  12. ^ Zhu G, Wu CJ, Zhao Y, Ashwell JD (August 2007). "Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP". Current Biology. 17 (16): 1438–1443. Bibcode:2007CBio...17.1438Z. doi:10.1016/j.cub.2007.07.041. PMID 17702576. S2CID 16248887.
  13. ^ Vanlangenakker N, Vanden Berghe T, Vandenabeele P (January 2012). "Many stimuli pull the necrotic trigger, an overview". Cell Death and Differentiation. 19 (1): 75–86. doi:10.1038/cdd.2011.164. PMC 3252835. PMID 22075985.
  14. ^ Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, et al. (October 2013). "RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition". Cell Death and Differentiation. 20 (10): 1381–1392. doi:10.1038/cdd.2013.94. PMC 3770330. PMID 23892367.
  15. ^ Remijsen Q, Goossens V, Grootjans S, Van den Haute C, Vanlangenakker N, Dondelinger Y, et al. (January 2014). "Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis". Cell Death & Disease. 5 (1): e1004. doi:10.1038/cddis.2013.531. PMC 4040672. PMID 24434512.
  16. ^ Christofferson DE, Li Y, Yuan J (2014). "Control of life-or-death decisions by RIP1 kinase". Annual Review of Physiology. 76: 129–150. doi:10.1146/annurev-physiol-021113-170259. PMID 24079414.
  17. ^ Zhang J, Zhang H, Li J, Rosenberg S, Zhang EC, Zhou X, et al. (December 2011). "RIP1-mediated regulation of lymphocyte survival and death responses". Immunologic Research. 51 (2–3): 227–236. doi:10.1007/s12026-011-8249-3. PMC 3244575. PMID 22038529.
  18. ^ a b Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (April 1996). "TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex". Immunity. 4 (4): 387–396. doi:10.1016/s1074-7613(00)80252-6. PMID 8612133.
  19. ^ a b Linkermann A, Green DR (January 2014). "Necroptosis". The New England Journal of Medicine. 370 (5): 455–465. doi:10.1056/NEJMra1310050. PMC 4035222. PMID 24476434.
  20. ^ a b c Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. (June 2009). "Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation". Cell. 137 (6): 1112–1123. doi:10.1016/j.cell.2009.05.037. PMC 2727676. PMID 19524513.
  21. ^ a b c d Green DR, Oberst A, Dillon CP, Weinlich R, Salvesen GS (October 2011). "RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts". Molecular Cell. 44 (1): 9–16. doi:10.1016/j.molcel.2011.09.003. PMC 3192321. PMID 21981915.
  22. ^ "St. Jude finds NLRP12 as a new drug target for infection, inflammation and hemolytic diseases". www.stjude.org. 2023-06-01. Retrieved 2024-08-19.
  23. ^ Pandeya A, Kanneganti TD (January 2024). "Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes". Trends in Molecular Medicine. 30 (1) (published 2024-01-30): 74–88. doi:10.1016/j.molmed.2023.10.001. PMC 10842719. PMID 37977994.
  24. ^ "Promising preclinical cancer therapy harnesses a newly discovered cell death pathway". www.stjude.org. 2021-10-19. Retrieved 2024-08-19.
  25. ^ "ZBP1 links interferon treatment and dangerous inflammatory cell death during COVID-19". www.stjude.org. 2022-05-19. Retrieved 2024-08-19.
  26. ^ "The PANoptosome: a new frontier in innate immune responses". www.stjude.org. 2021-09-01. Retrieved 2024-08-19.
  27. ^ "In the lab, St. Jude scientists identify possible COVID-19 treatment". www.stjude.org. 2020-11-18. Retrieved 2024-08-19.
  28. ^ "Discovering the secrets of the enigmatic caspase-6". www.stjude.org. 2020-04-15. Retrieved 2024-08-19.
  29. ^ "Breaking the dogma: Key cell death regulator has more than one way to get the job done". www.stjude.org. 2019-12-23. Retrieved 2024-08-19.
  30. ^ Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE, et al. (August 2016). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2) (published 2016-08-05). doi:10.1126/sciimmunol.aag2045. PMC 5131924. PMID 27917412.
  31. ^ Karki R, Sharma BR, Lee E, Banoth B, Malireddi RK, Samir P, et al. (June 2020). "Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer". JCI Insight. 5 (12) (published 2020-06-18): e136720. doi:10.1172/jci.insight.136720. PMC 7406299. PMID 32554929.
  32. ^ "Diet affects mix of intestinal bacteria and the risk of inflammatory bone disease". www.stjude.org. 2014-10-02. Retrieved 2024-08-19.
  33. ^ Malireddi RK, Karki R, Sundaram B, Kancharana B, Lee S, Samir P, et al. (July 2021). "Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth". ImmunoHorizons. 5 (7) (published 2022-01-21): 568–580. doi:10.4049/immunohorizons.2100059. PMC 8522052. PMID 34290111.
  34. ^ Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. (January 2021). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1) (published 2021-01-07): 149–168.e17. doi:10.1016/j.cell.2020.11.025. PMC 7674074. PMID 33278357.
  35. ^ Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, et al. (August 2022). "ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection". Science Immunology. 7 (74) (published 2022-05-19): eabo6294. doi:10.1126/sciimmunol.abo6294. PMC 9161373. PMID 35587515.
  36. ^ Wang Y, Pandian N, Han JH, Sundaram B, Lee S, Karki R, et al. (September 2022). "Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method". Cellular and Molecular Life Sciences. 79 (10) (published 2023-09-28): 531. doi:10.1007/s00018-022-04564-z. PMC 9545391. PMID 36169732.
  37. ^ Sundaram B, Pandian N, Mall R, Wang Y, Sarkar R, Kim HJ, et al. (June 2023). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13) (published 2024-06-22): 2783–2801.e20. doi:10.1016/j.cell.2023.05.005. PMC 10330523. PMID 37267949.
  38. ^ a b Malireddi RK, Gurung P, Mavuluri J, Dasari TK, Klco JM, Chi H, et al. (April 2018). "TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation". The Journal of Experimental Medicine. 215 (4) (published 2018-04-02): 1023–1034. doi:10.1084/jem.20171922. PMC 5881469. PMID 29500178.
  39. ^ a b Malireddi RK, Gurung P, Kesavardhana S, Samir P, Burton A, Mummareddy H, et al. (March 2020). "Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease". The Journal of Experimental Medicine. 217 (3) (published 2020-03-02). doi:10.1084/jem.20191644. PMC 7062518. PMID 31869420.
  40. ^ a b c Malireddi RK, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti TD (December 2020). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12) (published 2020-12-11): 789–796. doi:10.4049/immunohorizons.2000097. PMC 7906112. PMID 33310881.
  41. ^ a b Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, et al. (October 2017). "RIPK1 mediates a disease-associated microglial response in Alzheimer's disease". Proceedings of the National Academy of Sciences of the United States of America. 114 (41): E8788 – E8797. Bibcode:2017PNAS..114E8788O. doi:10.1073/pnas.1714175114. PMC 5642727. PMID 28904096.
  42. ^ "What is ALS?". ALSA.org. Retrieved 2017-10-21.
  43. ^ Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, et al. (August 2016). "RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS". Science. 353 (6299): 603–608. Bibcode:2016Sci...353..603I. doi:10.1126/science.aaf6803. PMC 5444917. PMID 27493188.
  44. ^ "Transmission of Nerve Impulses". www.cliffsnotes.com. Retrieved 2017-10-21.
  45. ^ Media Update: Sanofi presents new data from robust MS clinical pipeline exploring multiple approaches to address important unmet patient needs October 2, 2023
  46. ^ Tao P, Sun J, Wu Z, Wang S, Wang J, Li W, et al. (January 2020). "A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1". Nature. 577 (7788): 109–114. doi:10.1038/s41586-019-1830-y. PMID 31827280. S2CID 209311868.
  47. ^ Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL, Chau D, et al. (January 2020). "Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease". Nature. 577 (7788): 103–108. doi:10.1038/s41586-019-1828-5. PMC 6930849. PMID 31827281.; Lay summary in: Ganguly P (23 December 2019). "Researchers discover a new autoinflammatory disease called CRIA syndrome". Genome.gov. National Human Genome Research Institute. Retrieved 6 February 2022.
  48. ^ a b c d Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, et al. (June 2008). "cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination". Molecular Cell. 30 (6): 689–700. doi:10.1016/j.molcel.2008.05.014. PMID 18570872.
  49. ^ a b Liao W, Xiao Q, Tchikov V, Fujita K, Yang W, Wincovitch S, et al. (May 2008). "CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation". Current Biology. 18 (9): 641–649. Bibcode:2008CBio...18..641L. doi:10.1016/j.cub.2008.04.017. PMC 2587165. PMID 18450452.
  50. ^ a b Chaudhary PM, Eby MT, Jasmin A, Kumar A, Liu L, Hood L (September 2000). "Activation of the NF-kappaB pathway by caspase 8 and its homologs". Oncogene. 19 (39): 4451–4460. doi:10.1038/sj.onc.1203812. PMID 11002417.
  51. ^ Oshima S, Turer EE, Callahan JA, Chai S, Advincula R, Barrera J, et al. (February 2009). "ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development". Nature. 457 (7231): 906–909. Bibcode:2009Natur.457..906O. doi:10.1038/nature07575. PMC 2642523. PMID 19060883.
  52. ^ Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, et al. (June 2000). "The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways". Current Biology. 10 (11): 640–648. Bibcode:2000CBio...10..640K. doi:10.1016/S0960-9822(00)00512-1. PMID 10837247. S2CID 14819939.
  53. ^ a b Duan H, Dixit VM (January 1997). "RAIDD is a new 'death' adaptor molecule". Nature. 385 (6611): 86–89. Bibcode:1997Natur.385...86D. doi:10.1038/385086a0. hdl:2027.42/62739. PMID 8985253. S2CID 4317538.
  54. ^ Ahmad M, Srinivasula SM, Wang L, Talanian RV, Litwack G, Fernandes-Alnemri T, et al. (February 1997). "CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP". Cancer Research. 57 (4): 615–619. PMID 9044836.
  55. ^ Yu PW, Huang BC, Shen M, Quast J, Chan E, Xu X, et al. (May 1999). "Identification of RIP3, a RIP-like kinase that activates apoptosis and NFkappaB". Current Biology. 9 (10): 539–542. Bibcode:1999CBio....9..539Y. doi:10.1016/S0960-9822(99)80239-5. PMID 10339433. S2CID 18024859.
  56. ^ Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, et al. (July 2012). "The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis". Cell. 150 (2): 339–350. doi:10.1016/j.cell.2012.06.019. PMC 3664196. PMID 22817896.
  57. ^ Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW (March 2009). "The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling". The EMBO Journal. 28 (5): 513–522. doi:10.1038/emboj.2008.285. PMC 2657574. PMID 19131965.
  58. ^ Chen D, Li X, Zhai Z, Shu HB (May 2002). "A novel zinc finger protein interacts with receptor-interacting protein (RIP) and inhibits tumor necrosis factor (TNF)- and IL1-induced NF-kappa B activation". The Journal of Biological Chemistry. 277 (18): 15985–15991. doi:10.1074/jbc.M108675200. PMID 11854271.
  59. ^ Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J (June 1999). "The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation". The EMBO Journal. 18 (11): 3044–3053. doi:10.1093/emboj/18.11.3044. PMC 1171386. PMID 10356400.
  60. ^ Kim JW, Choi EJ, Joe CO (September 2000). "Activation of death-inducing signaling complex (DISC) by pro-apoptotic C-terminal fragment of RIP". Oncogene. 19 (39): 4491–4499. doi:10.1038/sj.onc.1203796. PMID 11002422.
  61. ^ Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, Izrael-Tomasevic A, et al. (January 2009). "Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1)". The Biochemical Journal. 417 (1): 149–160. doi:10.1042/BJ20081885. PMID 18939944.
  62. ^ a b Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, et al. (August 2008). "Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies". Cell. 134 (4): 668–678. doi:10.1016/j.cell.2008.07.039. PMID 18724939. S2CID 3955385.
  63. ^ a b Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, et al. (September 2008). "c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation". The Journal of Biological Chemistry. 283 (36): 24295–24299. doi:10.1074/jbc.C800128200. PMC 3259840. PMID 18621737.
  64. ^ Takeuchi M, Rothe M, Goeddel DV (August 1996). "Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins". The Journal of Biological Chemistry. 271 (33): 19935–19942. doi:10.1074/jbc.271.33.19935. PMID 8702708.
  65. ^ Tada K, Okazaki T, Sakon S, Kobarai T, Kurosawa K, Yamaoka S, et al. (September 2001). "Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death". The Journal of Biological Chemistry. 276 (39): 36530–36534. doi:10.1074/jbc.M104837200. PMID 11479302.
  66. ^ Malinin NL, Boldin MP, Kovalenko AV, Wallach D (February 1997). "MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1". Nature. 385 (6616): 540–544. doi:10.1038/385540a0. PMID 9020361. S2CID 4366355.
  67. ^ Ma Q, Zhou L, Shi H, Huo K (June 2008). "NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation". Cellular Signalling. 20 (6): 1044–1051. doi:10.1016/j.cellsig.2008.01.015. PMID 18299187.
  68. ^ Belizário J, Vieira-Cordeiro L, Enns S (2015). "Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice". Mediators of Inflammation. 2015: 128076. doi:10.1155/2015/128076. PMC 4600508. PMID 26491219.

Further reading

  • Overview of all the structural information available in the PDB for UniProt: Q13546 (Receptor-interacting serine/threonine-protein kinase 1) at the PDBe-KB.

Read other articles:

Metana diklorinasi menjadi metil klorida. Reaksi substitusi adalah bentuk reaksi kimia, di mana suatu atom dalam senyawa kimia digantikan dengan atom lainnya.[1][2] Reaksi substitusi adalah salah satu reaksi yang penting dalam kimia organik. Reaksi substitusi dalam kimia organik dikelompokkan sebagai elektrofilik atau nukleofilik bergantung pada reagen yang digunakan, apakah suatu zat antara yang reaktif terlibat dalam reaksi tersebut adalah suatu karbokation, suatu karbanion ...

 

Sede del Consejo Insular de Mallorca, órgano encargado de la gestión de las carreteras mallorquinas.La red de carreteras de Mallorca está formada por todas aquellas carreteras que discurren por la isla homónima. Todas ellas, sin importar su categoría, son competencia del Departamento de Obras Públicas del Consejo Insular de Mallorca. La red se divide en tres categorías: Red primaria básica: Constituida por las carreteras por donde discurren tráficos de interés general, por la import...

 

Гемологія, Ґемологія (англ. Gemmology, нім. Gemmologie, Edelsteinkunde) — наука про дорогоцінні камені, сукупність даних про коштовне і виробне каміння, головним чином фіз. властивості, особливості хімічного складу, декоративно-художні переваги мінералів і мінеральних агрегатів, що ви...

American politician (born 1951) For other people named Mike Thompson, see Michael Thompson. Mike ThompsonMember of the U.S. House of Representativesfrom CaliforniaIncumbentAssumed office January 3, 1999Preceded byFrank RiggsConstituency1st district (1999–2013)5th district (2013–2023)4th district (2023–present)Member of the California State Senatefrom the 2nd districtIn officeMay 20, 1993 – November 30, 1998Preceded byBarry KeeneSucceeded byWesley ChesbroMember...

 

Наддніпрянська правда Країна  УкраїнаТип громадсько-політичнаМова українськаЖанр соціальні медіаТериторія Херсонська областьМісце публікації ХерсонФормат A2, 4 с. Засновано 1917[1]Засновник Херсонська обласна рада,трудовий колективВласник Херсонська обласн...

 

العلاقات البوتسوانية السيراليونية بوتسوانا سيراليون   بوتسوانا   سيراليون تعديل مصدري - تعديل   العلاقات البوتسوانية السيراليونية هي العلاقات الثنائية التي تجمع بين بوتسوانا وسيراليون.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية

Coat of arms of Saba The coat of arms of Saba was established in 1985 by the island council of Saba,[1] when it was still part of the Netherlands Antilles. It remained the coat of arms of Saba after the dissolution of the Netherlands Antilles, and the subsequent change of Saba's constitutional status into a special municipality of the Netherlands in 2010. It consists of a shield with an Audubon's shearwater (Puffinus lherminieri) (the national bird) on top, flanked by Saban cabbage (a...

 

The Collection: Story Op.2Album kompilasi karya JonghyunDirilis24 April 2017 (2017-04-24)BahasaKoreanLabel S.M. Entertainment KT Music Kronologi Jonghyun 'She Is(2016) The Collection: Story Op.2 ' Poet | Artist(2018) 'The Collection: Story Op.1(2015) '''The Collection: Story Op.2(2017) Singel dalam album Story Op.2 Lonely (Feat. TaeYeon)Dirilis: 24 April 2017 The Collection: Story Op.2 (Hangul: 소품집: 이야기 Op.2; RR: Sopunjib: Iyagi Op.2) adalah album kompilasi kedua dan tera...

 

  Bothrops matogrossensis TaxonomíaReino: AnimaliaFilo: ChordataSubfilo: VertebrataClase: SauropsidaOrden: SquamataSuborden: SerpentesFamilia: ViperidaeSubfamilia: CrotalinaeGénero: BothropsEspecie: Bothrops matogrossensisAmaral, 1925Sinonimia Bothrops neuwiedi matogrossensis Amaral, 1925 Bothrops neuwiedi boliviana Amaral 1927 Bothrops neuwiedi bolivianus Hoge, 1966 Bothrops neuwiedi mattogrossensis [sic] Peters & Orejas-Miranda, 1970 Bothrops matogrossensis Silva in Campbell &...

Election 1894 Oregon gubernatorial election ← 1890 June 4, 1894 1898 →   Nominee William Paine Lord Nathan Pierce William Galloway Party Republican Populist Democratic Popular vote 41,139 26,125 17,165 Percentage 47.2% 30.0% 20.5% Governor before election Sylvester Pennoyer Democratic Elected Governor William Paine Lord Republican The 1894 Oregon gubernatorial election took place on June 4, 1894 to elect the governor of the U.S. state of Oregon. The election ma...

 

Regency in North Sumatra, IndonesiaKaro Regency Tanah KaroRegencySipiso-Piso Waterfall in Tongging, Karo Regency Coat of armsMotto: Pijer PodiCountryIndonesiaProvinceNorth SumatraRegency seatKabanjaheGovernment • RegentCory Sebayang • Vice RegentTheopilus Ginting • Chairwoman of Council of RepresentativesIriani Tarigan (PDI-P) • Vice Chairmen of Council of RepresentativesSadarta Bukit (Gerindra) and David Kristian Sitepu (Nasdem)Area ...

 

June 1985 aircraft bombing over the Atlantic Ocean near Ireland For the 2008 Canadian documentary film, see Air India 182 (film). Air India Flight 182The aircraft involved, VT-EFO, seen landing at London Heathrow Airport on 10 June 1985, less than two weeks before the bombingBombingDate23 June 1985 (1985-06-23)SummaryBombing by the Babbar KhalsaSiteAtlantic Ocean,190 km (120 mi) WSW of Waterville, Ireland 51°3.6′N 12°49′W / 51.0600°N 12.817°W / 5...

Seeking of a third partner by a couple Part of a series onNon-monogamy and polyamory Relationships Casual dating Ethical non-monogamy Group marriage Ménage à trois Open relationship Marriage Sexual practices Casual sex Cuckold / Cuckquean Troilism Extramarital sex Gang bang Group sex Orgy Swinging Threesome Unicorn hunting Terms and values Ambiamory Hookup culture New relationship energy Primary and secondary Polyfidelity Relationship anarchy Related topics Free love Free union Polygamy Sol...

 

Czech canoeist (born 2003) Tereza KneblováTereza Kneblová in 2023Personal informationNationalityCzechBorn (2003-04-11) 11 April 2003 (age 20)SportCountryCzech RepublicSportCanoe slalom, Wildwater canoeingEventC1, K1, Extreme K1 Medal record Women's canoe slalom Representing the  Czech Republic World Championships 2023 London C1 team European Games 2023 Kraków C1 team European Championships 2020 Prague C1 team U23 World Championships 2022 Ivrea C1 team 2023 Kraków C1 team 2023 Kr...

 

Вулиця Петра Калнишевського УкраїнаНаселений пункт ЖитомирМісцевість КрошняРайон БогунськийІсторичні відомостіНазва на честь кошового отамана Петра КалнишевськогоКолишні назви Жовтнева, ВорошиловаЗагальні відомостіПротяжність 700 мКоординати 50°17′20″ пн. ш...

YemmeliaLahir26 Maret 1964 (umur 59) Situmbuk, Tilatang Kamang, Agam, Sumatera BaratKebangsaan IndonesiaAlmamaterUniversitas Ekasakti, PadangPekerjaanBirokratDikenal atasAktivis organisasiTokoh masyarakat BantenPartai politikPartai Keadilan Sejahtera (2018—)[1]Suami/istriEddy WiryantoAnakDua orang putri Hj. Yemmelia, S.E., M.Si. (lahir 26 Maret 1964)[2] adalah seorang mantan birokrat Indonesia yang pernah dipercaya menjabat sebagai Kepala Bidang (Kabid) Budaya, Dinas Bu...

 

Bank AlbaniaBanka e ShqipërisëKantor pusatSheshi Austria 1, 1001 Tirana, AlbaniaDidirikan2 September 1925[1][2]Pemilik100% Kepemilikan negara[3]GubernurGent SejkoNegaraAlbaniaMata uangLek AlbaniaALL (ISO 4217)Cadangan2 890 juta USD[3]Situs webhttp://www.bankofalbania.org/ Bank of Albania (bahasa Albania: Banka e Shqipërisë) adalah bank sentral dari Albania yang berkantor pusat di Tirana, dan bank tersebut juga memiliki lima cabang lain yang berloka...

 

The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (April 2023) (Learn how and when to remove this template message)Culture of deaf persons An introduction to Deaf culture in American Sign Language with English subtitles available Deaf culture is the set of social beliefs, behaviors, art, literary tradi...

This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (March 2015) (Learn how and when to remove this template message) Hospital in Oklahoma, United StatesINTEGRIS Health Inc.Integris Baptist Medical CenterGeographyLocation3300 NW Expressway, Oklahoma City, OK 73112, Oklahoma City, Oklahoma, United StatesCoordinates35...

 

Russian professional ice hockey center (born 1982) Ice hockey player Ruslan Zainullin Born (1982-02-14) 14 February 1982 (age 41)Kazan, Soviet UnionHeight 6 ft 2 in (188 cm)Weight 218 lb (99 kg; 15 st 8 lb)Position Right WingVHL teamFormer teams Kuban KrasnodarAk Bars KazanHC Neftekhimik NizhnekamskHC Dynamo MoscowHC Spartak MoscowHC MVDTorpedo Nizhny NovgorodHC CSKA MoscowNHL Draft 34th overall, 2000Tampa Bay LightningPlaying career 1999–2016 Rus...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!