Quadratic growth

In mathematics, a function or sequence is said to exhibit quadratic growth when its values are proportional to the square of the function argument or sequence position. "Quadratic growth" often means more generally "quadratic growth in the limit", as the argument or sequence position goes to infinity – in big Theta notation, .[1] This can be defined both continuously (for a real-valued function of a real variable) or discretely (for a sequence of real numbers, i.e., real-valued function of an integer or natural number variable).

Examples

Examples of quadratic growth include:

For a real function of a real variable, quadratic growth is equivalent to the second derivative being constant (i.e., the third derivative being zero), and thus functions with quadratic growth are exactly the quadratic polynomials, as these are the kernel of the third derivative operator . Similarly, for a sequence (a real function of an integer or natural number variable), quadratic growth is equivalent to the second finite difference being constant (the third finite difference being zero),[2] and thus a sequence with quadratic growth is also a quadratic polynomial. Indeed, an integer-valued sequence with quadratic growth is a polynomial in the zeroth, first, and second binomial coefficient with integer values. The coefficients can be determined by taking the Taylor polynomial (if continuous) or Newton polynomial (if discrete).

Algorithmic examples include:

  • The amount of time taken in the worst case by certain algorithms, such as insertion sort, as a function of the input length.[3]
  • The numbers of live cells in space-filling cellular automaton patterns such as the breeder, as a function of the number of time steps for which the pattern is simulated.[4]
  • Metcalfe's law stating that the value of a communications network grows quadratically as a function of its number of users.[5]

See also

References

  1. ^ Moore, Cristopher; Mertens, Stephan (2011), The Nature of Computation, Oxford University Press, p. 22, ISBN 9780191620805.
  2. ^ Kalman, Dan (1997), Elementary Mathematical Models: Order Aplenty and a Glimpse of Chaos, Cambridge University Press, p. 81, ISBN 9780883857076.
  3. ^ Estivill-Castro, Vladimir (1999), "Sorting and order statistics", in Atallah, Mikhail J. (ed.), Algorithms and Theory of Computation Handbook, Boca Raton, Florida: CRC, pp. 3-1 – 3-25, MR 1797171.
  4. ^ Griffeath, David; Hickerson, Dean (2003), "A two-dimensional cellular automaton crystal with irrational density", New constructions in cellular automata, St. Fe Inst. Stud. Sci. Complex., New York: Oxford Univ. Press, pp. 79–91, MR 2079729. See in particular p. 81: "A breeder is any pattern which grows quadratically by creating a steady stream of copies of a second object, each of which creates a stream of a third."
  5. ^ Rohlfs, Jeffrey H. (2003), "3.3 Metcalfe's law", Bandwagon Effects in High-technology Industries, MIT Press, pp. 29–30, ISBN 9780262681384.


Read other articles:

County in Qom province, Iran For the city, see Qom. For other places with a similar name, see Qom. County in Qom, IranQom County Persian: شهرستان قمCountyLocation of Qom County in Qom provinceLocation of Qom province in IranCoordinates: 34°42′N 51°02′E / 34.700°N 51.033°E / 34.700; 51.033[1]Country IranProvinceQomCapitalQomDistrictsCentral, Khalajestan, SalafcheganPopulation (2016)[2] • Total1,292,28...

 

American writer (1871–1955) Charmian LondonLondon in 1905; photo by James E. PurdyBornCharmian KittredgeNovember 27, 1871Wilmington, California, U.S.DiedJanuary 14, 1955(1955-01-14) (aged 83)Glen Ellen, California, U.S.Spouse Jack London ​ ​(m. 1905; died 1916)​ Charmian London (née Kittredge; November 27, 1871 – January 14, 1955[1]) was an American writer and the second wife of Jack London. Early life Clara Charmian Kittredge ...

 

Mika Waltari 1935 Mika Toimi Waltari [ˈmikɑ ˈvɑltɑri]  (* 19. September 1908 in Helsinki; † 26. August 1979 ebenda) war einer der erfolgreichsten Schriftsteller Finnlands. Seine Werke wurden in mehr als 30 Sprachen übersetzt. Inhaltsverzeichnis 1 Leben 2 Deutsche Übersetzungen 3 Werke (Auswahl) 3.1 Historische Romane 3.2 Andere Werke 4 Literatur 5 Weblinks 6 Einzelnachweise Leben Mika Waltari 1928 Mika Waltari kam 1908 in Helsinki als Sohn des lutherischen Pastors und Le...

Curití Gemeente in Colombia Situering Departement Santander Coördinaten 6° 40′ NB, 73° 0′ WL Algemeen Inwoners (2005) 11.343 Detailkaart Locatie van Curití in Santander Foto's Portaal    Colombia Curití is een gemeente in het Colombiaanse departement Santander. De gemeente telt 11.343 inwoners (2005). Bronnen, noten en/of referenties Departamento Administrativo Nacional de Estadística (DANE) · · Gemeenten in Santander Aguada · Albania · Aratoca · Barbosa · B...

 

روي بهاسكار معلومات شخصية الميلاد 15 مايو 1944  تدينغتون  الوفاة 19 نوفمبر 2014 (70 سنة) [1]  ليدز  مواطنة المملكة المتحدة[2]  الحياة العملية المدرسة الأم كلية نفيلدكلية باليول بجامعة أوكسفورد  المهنة مؤلف،  وفيلسوف،  وأستاذ جامعي  اللغات الإنجليزية...

 

2010 studio album by Elaine PaigeElaine Paige and FriendsStudio album by Elaine PaigeReleased1 November 2010 (2010-11-01)Elaine Paige chronology Elaine Paige Live(2009) Elaine Paige and Friends(2010) Elaine Paige and Friends is a duet album from Elaine Paige, released on November 1, 2010. Phil Ramone produced the album for Rhino/Warner Bros Records.[1] The CD debuted on the UK Album Chart at #18.[2] Paige toured the UK in concert promoting the recording ...

Empress KiPoster promosional untuk Empress Ki. Dari kiri ke kanan: Ta Hwan, Ki Seung-nyang, Wang YooGenreDrama periode sejarah PercintaanDitulis olehJang Young-chul Jung Kyung-soonSutradaraHan Hee Lee Sung-joonPemeranHa Ji-won Joo Jin-mo Ji Chang-wookNegara asalKorea SelatanBahasa asliKoreaJmlh. episode51ProduksiProduser eksekutifJoo Sung-wooDurasi60 menit Senin dan Selasa pada pukul 21:55 (WSK)Rumah produksiVictory ContentsRilisJaringan asliMunhwa Broadcasting CorporationRilis asli28 Oktober...

 

كوم الصعايدة  -  قرية مصرية -  تقسيم إداري البلد  مصر المحافظة محافظة سوهاج المركز جرجا المسؤولون السكان التعداد السكاني 9474 نسمة (إحصاء 2006) معلومات أخرى التوقيت ت ع م+02:00  تعديل مصدري - تعديل   قرية كوم الصعايدة هي إحدى القرى التابعة لمركز جرجا بمحافظة سوهاج ف...

 

Map of the United States with Oregon highlighted Oregon is a state located in the Western United States that is divided into 36 counties and contains 135 census designated-places (CDPs).[1] All population data is based on the 2010 census. Census-Designated Places Aloha Oak Hills Green Brightwood is one of the communities in Mount Hood Village Market in Rose Lodge Baptist church in Stafford Pacific City Trail Pine Hollow Umpqua River Light in Winchester Bay Crawfordsville Bridge in Cra...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) دانيال براغ معلومات شخصية الميلاد 3 أغسطس 1992 (العمر 31 سنة)سيدني  الطول 1.71 م (5 قدم 7 1⁄2 بوصة) مركز اللعب وسط الجنسية أستراليا  مسيرة الشباب سنوا

 

Americans of Russian birth or descent Russian AmericansРусские американцыTotal population2,432,733 self-reported[1] 0.741% of the U.S. population (2019) 391,641 Russian-born[2]Regions with significant populationsNew York CityNew JerseyLong IslandNew EnglandPhiladelphiaPittsburghGreater ClevelandAlaskaChicago metropolitan areaMilwaukeeMinneapolis–Saint PaulMetro DetroitMarylandOregon (Portland, Willamette Valley)North DakotaWashingtonFloridaCalifornia (Los An...

 

Overview of the languages in Lebanon Languages of LebanonOfficialModern Standard Arabic (MSA)Semi-officialFrenchMainLebanese dialect of Levantine ArabicMinorityWestern ArmenianForeignEnglishSignedLevantine Sign LanguageKeyboard layoutArabic keyboard or QWERTY This article contains Levantine written in Arabic characters. Without proper rendering support, you may see احنا‎ and احنا‎ appearing as two different characters. If so, apply this custom style in your user settings: [la...

Politics of ancient Rome Periods Roman Kingdom753–509 BC Roman Republic509–27 BC Roman Empire27 BC – AD 395 Principate27 BC – AD 284 DominateAD 284–641 WesternAD 395–476 EasternAD 395–1453 Timeline Constitution Kingdom Republic Sullan republic Empire Augustan reforms Late Empire Political institutions Imperium Collegiality Auctoritas Roman citizenship Cursus honorum Assemblies Centuriate Curiate Plebeian Tribal Ordinary magistrates Consul Praetor Quaestor Promagistrate Aedile Tr...

 

Nozoki AnaGambar sampul manga volume pertamaノ・ゾ・キ・ア・ナ(No-Zo-Ki-A-Na)GenreRomantis erotis MangaPengarangWakou HonnaPenerbitShogakukanMajalahMoba ManDemografiSeinenTerbitOktober 2009 (2009-10) – Februari 2013 (2013-2)Volume13 Video animasi orisinalSutradaraKatsuhiko NishijimaSkenarioMasahiro ŌkuboMusikMiyako OkaTakeo SunamoriStudioStudio FantasiaTayang28 Februari 2013 (2013-02-28) (DVD) 24 Mei 2013 (2013-05-24) (Blu-ray) Film laga hidupSutradaraAtaru Ued...

 

Swedish politician (born 1985) Håkan SvennelingMember of the RiksdagIncumbentAssumed office 29 September 2014ConstituencyVärmland County Personal detailsBorn (1985-09-17) 17 September 1985 (age 38)Political partyLeft Party Håkan Svenneling (born 17 September 1985)[1] is a Swedish politician. Since September 2014,[update] he serves as Member of the Riksdag representing the constituency of Värmland County.[2] He is affiliated with the Left Party.[3&...

Anopheles merus Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Diptera Family: Culicidae Genus: Anopheles Species: A. merus Binomial name Anopheles merusDonitz, 1902 Anopheles merus is a species of mosquito that can be found in coastal areas of Eastern and Southern Africa. The species is a main vector of malaria.[1][2] References ^ Anopheles merus - Pestinfo-Wiki. wiki.pestinfo.org. Retrieved 2023-07-19. ^ Anopheles ...

 

Duan Yingying Duan Yingying nel 2019 Nazionalità  Cina Altezza 186 cm Peso 84 kg Tennis Carriera Singolare1 Vittorie/sconfitte 299 – 200 (59,92%) Titoli vinti 1 Miglior ranking 60ª (24 aprile 2017) Ranking attuale 540ª (17 febbraio 2020) Risultati nei tornei del Grande Slam  Australian Open 3T (2017)  Roland Garros 1T (2017, 2018)  Wimbledon 2T (2015, 2016)  US Open 2T (2016, 2017) Doppio1 Vittorie/sconfitte 112 – 87 (56,28%) Titoli vinti 3 Miglior ranking 16ª...

 

Enclosure and protection of nutritional substances for distribution and sale Testing modified atmosphere in a plastic bag of carrots Food packaging is a packaging system specifically designed for food and represents one of the most important aspects among the processes involved in the food industry, as it provides protection from chemical, biological and physical alterations.[1] The main goal of food packaging is to provide a practical means of protecting and delivering food goods at ...

Fictional character This article is about the comic book character. For the British heavy metal drummer, see Lucas Fox. For the baseball player, see Lucius Fox (baseball). Comics character Lucius FoxLucius Fox in Batman #307 (January 1979)Art by John Calnan and Dick GiordanoPublication informationPublisherDC ComicsFirst appearanceBatman #307 (January 1979)Created byLen Wein (writer)John Calnan (artist)In-story informationFull nameLucius FoxTeam affiliationsWayne EnterprisesSupporting characte...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 11 de octubre de 2018. Instituto Tecnológico de Nuevo León Technological Institute of Nuevo León Sigla TECNLSobrenombre TEC de Nuevo León.Lema 'Ciencia y Tecnología al servicio del hombre.'Tipo PúblicaFundación 1976LocalizaciónDirección Ave. Eloy Cavazos # 2001Colonia Tolteca, GuadalupeGuadalupe, Nuevo León, México MéxicoCampus GuadalupeCoordenadas 25°39′59″N 1...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!