Proton decay

The pattern of weak isospins, weak hypercharges, and color charges for particles in the Georgi–Glashow model. Here, a proton, consisting of two up quarks and a down, decays into a pion, consisting of an up and anti-up, and a positron, via an X boson with electric charge −4/3e.

In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron.[1] The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×1034 years.[2]

According to the Standard Model, the proton, a type of baryon, is stable because baryon number (quark number) is conserved (under normal circumstances; see Chiral anomaly for an exception). Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. Positron emission and electron capture—forms of radioactive decay in which a proton becomes a neutron—are not proton decay, since the proton interacts with other particles within the atom.

Some beyond-the-Standard-Model grand unified theories (GUTs) explicitly break the baryon number symmetry, allowing protons to decay via the Higgs particle, magnetic monopoles, or new X bosons with a half-life of 1031 to 1036 years. For comparison, the universe is roughly 1.38×1010 years old.[3] To date, all attempts to observe new phenomena predicted by GUTs (like proton decay or the existence of magnetic monopoles) have failed.

Quantum tunnelling may be one of the mechanisms of proton decay.[4][5][6]

Quantum gravity[7] (via virtual black holes and Hawking radiation) may also provide a venue of proton decay at magnitudes or lifetimes well beyond the GUT scale decay range above, as well as extra dimensions in supersymmetry.[8][9][10][11]

There are theoretical methods of baryon violation other than proton decay including interactions with changes of baryon and/or lepton number other than 1 (as required in proton decay). These included B and/or L violations of 2, 3, or other numbers, or B − L violation. Such examples include neutron oscillations and the electroweak sphaleron anomaly at high energies and temperatures that can result between the collision of protons into antileptons[12] or vice versa (a key factor in leptogenesis and non-GUT baryogenesis).

Baryogenesis

Unsolved problem in physics:
Do protons decay? If so, then what is the half-life? Can nuclear binding energy affect this?

One of the outstanding problems in modern physics is the predominance of matter over antimatter in the universe. The universe, as a whole, seems to have a nonzero positive baryon number density – that is, there is more matter than antimatter. Since it is assumed in cosmology that the particles we see were created using the same physics we measure today, it would normally be expected that the overall baryon number should be zero, as matter and antimatter should have been created in equal amounts. This has led to a number of proposed mechanisms for symmetry breaking that favour the creation of normal matter (as opposed to antimatter) under certain conditions. This imbalance would have been exceptionally small, on the order of 1 in every 1010 particles a small fraction of a second after the Big Bang, but after most of the matter and antimatter annihilated, what was left over was all the baryonic matter in the current universe, along with a much greater number of bosons.

Most grand unified theories explicitly break the baryon number symmetry, which would account for this discrepancy, typically invoking reactions mediated by very massive X bosons (
X
)
or massive Higgs bosons (
H0
). The rate at which these events occur is governed largely by the mass of the intermediate
X
or
H0
particles, so by assuming these reactions are responsible for the majority of the baryon number seen today, a maximum mass can be calculated above which the rate would be too slow to explain the presence of matter today. These estimates predict that a large volume of material will occasionally exhibit a spontaneous proton decay.

Experimental evidence

Proton decay is one of the key predictions of the various grand unified theories (GUTs) proposed in the 1970s, another major one being the existence of magnetic monopoles. Both concepts have been the focus of major experimental physics efforts since the early 1980s. To date, all attempts to observe these events have failed; however, these experiments have been able to establish lower bounds on the half-life of the proton. Currently, the most precise results come from the Super-Kamiokande water Cherenkov radiation detector in Japan:[13] a lower bound on the proton's half-life of 2.4×1034 years via positron decay, and similarly, 1.6×1034 years via antimuon decay, close to a supersymmetry (SUSY) prediction of 1034–1036 years.[14] An upgraded version, Hyper-Kamiokande, probably will have sensitivity 5–10 times better than Super-Kamiokande.

Theoretical motivation

Despite the lack of observational evidence for proton decay, some grand unification theories, such as the SU(5) Georgi–Glashow model and SO(10), along with their supersymmetric variants, require it. According to such theories, the proton has a half-life of about 1031~1036 years and decays into a positron and a neutral pion that itself immediately decays into two gamma ray photons:

Since a positron is an antilepton this decay preserves B − L number, which is conserved in most GUTs.

Additional decay modes are available (e.g.:
p+

μ+
+
π0
), both directly and when catalyzed via interaction with GUT-predicted magnetic monopoles.[15] Though this process has not been observed experimentally, it is within the realm of experimental testability for future planned very large-scale detectors on the megaton scale. Such detectors include the Hyper-Kamiokande.

Early grand unification theories (GUTs) such as the Georgi–Glashow model, which were the first consistent theories to suggest proton decay, postulated that the proton's half-life would be at least 1031 years. As further experiments and calculations were performed in the 1990s, it became clear that the proton half-life could not lie below 1032 years. Many books from that period refer to this figure for the possible decay time for baryonic matter. More recent findings have pushed the minimum proton half-life to at least 1034–1035 years, ruling out the simpler GUTs (including minimal SU(5) / Georgi–Glashow) and most non-SUSY models. The maximum upper limit on proton lifetime (if unstable), is calculated at 6×1039 years, a bound applicable to SUSY models,[16] with a maximum for (minimal) non-SUSY GUTs at 1.4×1036 years.[16](part 5.6)

Although the phenomenon is referred to as "proton decay", the effect would also be seen in neutrons bound inside atomic nuclei. Free neutrons—those not inside an atomic nucleus—are already known to decay into protons (and an electron and an antineutrino) in a process called beta decay. Free neutrons have a half-life of 10 minutes (610.2±0.8 s)[17] due to the weak interaction. Neutrons bound inside a nucleus have an immensely longer half-life – apparently as great as that of the proton.

Projected proton lifetimes

Theory class Proton lifetime (years)[18] Ruled out experimentally?
Minimal SU(5) (Georgi–Glashow) 1030–1031 Yes
Minimal SUSY SU(5) 1028–1032 Yes
SUGRA SU(5) 1032–1034 Yes
SUSY SO(10) 1032–1035 Partially
SUSY SU(5) (MSSM) ~1034 Partially
SUSY SU(5) – 5 dimensions 1034–1035 Partially
SUSY SO(10) MSSM G(224) 2×1034 No
Minimal (Basic) SO(10) – Non-SUSY < ~1035 (maximum range) No
Flipped SU(5) (MSSM) 1035–1036 No

The lifetime of the proton in vanilla SU(5) can be naively estimated as .[19] Supersymmetric GUTs with reunification scales around µ ~ 2×1016 GeV/c2 yield a lifetime of around 1034 yr, roughly the current experimental lower bound.

Decay operators

Dimension-6 proton decay operators

The dimension-6 proton decay operators are and where is the cutoff scale for the Standard Model. All of these operators violate both baryon number (B) and lepton number (L) conservation but not the combination B − L.

In GUT models, the exchange of an X or Y boson with the mass ΛGUT can lead to the last two operators suppressed by . The exchange of a triplet Higgs with mass M can lead to all of the operators suppressed by . See Doublet–triplet splitting problem.

Dimension-5 proton decay operators

In supersymmetric extensions (such as the MSSM), we can also have dimension-5 operators involving two fermions and two sfermions caused by the exchange of a tripletino of mass M. The sfermions will then exchange a gaugino or Higgsino or gravitino leaving two fermions. The overall Feynman diagram has a loop (and other complications due to strong interaction physics). This decay rate is suppressed by where MSUSY is the mass scale of the superpartners.

Dimension-4 proton decay operators

In the absence of matter parity, supersymmetric extensions of the Standard Model can give rise to the last operator suppressed by the inverse square of sdown quark mass. This is due to the dimension-4 operators
q




c
and
u
c
d
c

c
.

The proton decay rate is only suppressed by which is far too fast unless the couplings are very small.

See also

References

  1. ^ Ahmad, Ishfaq (1969), "Radioactive decays by Protons. Myth or reality?", The Nucleus, pp. 69–70
  2. ^ Bajc, Borut; Hisano, Junji; Kuwahara, Takumi; Omura, Yuji (2016). "Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5) GUTs". Nuclear Physics B. 910: 1. arXiv:1603.03568. Bibcode:2016NuPhB.910....1B. doi:10.1016/j.nuclphysb.2016.06.017. S2CID 119212168.
  3. ^ Francis, Matthew R. (22 September 2015). "Do protons decay?". symmetry magazine. Retrieved 2020-11-12.
  4. ^ Talou, P.; Carjan, N.; Strottman, D. (1998). "Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei". Physical Review C. 58 (6): 3280–3285. arXiv:nucl-th/9809006. Bibcode:1998PhRvC..58.3280T. doi:10.1103/PhysRevC.58.3280. S2CID 119075457.
  5. ^ Dicus, D. A.; Letaw, J. R.; Teplitz, D. C.; Teplitz, V. L. (January 1982). "Effects of proton decay on the cosmological future". The Astrophysical Journal. 252: 1. Bibcode:1982ApJ...252....1D. doi:10.1086/159528. ISSN 0004-637X.
  6. ^ Trixler, F. (2013). "Quantum Tunnelling to the Origin and Evolution of Life". Current Organic Chemistry. 17 (16): 1758–1770. doi:10.2174/13852728113179990083. PMC 3768233. PMID 24039543.
  7. ^ Bambi, Cosimo; Freese, Katherine (2008). "Dangerous implications of a minimum length in quantum gravity". Classical and Quantum Gravity. 25 (19): 195013. arXiv:0803.0749. Bibcode:2008CQGra..25s5013B. doi:10.1088/0264-9381/25/19/195013. hdl:2027.42/64158. S2CID 2040645.
  8. ^ Adams, Fred C.; Kane, Gordon L.; Mbonye, Manasse; Perry, Malcolm J. (2001). "Proton Decay, Black Holes, and Large Extra Dimensions - NASA/ADS". International Journal of Modern Physics A. 16 (13): 2399–2410. arXiv:hep-ph/0009154. Bibcode:2001IJMPA..16.2399A. doi:10.1142/S0217751X0100369X. S2CID 14989175.
  9. ^ Al-Modlej, Abeer; Alsaleh, Salwa; Alshal, Hassan; Ali, Ahmed Farag (2019). "Proton decay and the quantum structure of space–time". Canadian Journal of Physics. 97 (12): 1317–1322. arXiv:1903.02940. Bibcode:2019CaJPh..97.1317A. doi:10.1139/cjp-2018-0423. hdl:1807/96892. S2CID 119507878.
  10. ^ Giddings, Steven B. (1995). "The black hole information paradox". arXiv:hep-th/9508151.
  11. ^ Alsaleh, Salwa; Al-Modlej, Abeer; Farag Ali, Ahmed (2017). "Virtual black holes from the generalized uncertainty principle and proton decay". Europhysics Letters. 118 (5): 50008. arXiv:1703.10038. Bibcode:2017EL....11850008A. doi:10.1209/0295-5075/118/50008. S2CID 119369813.
  12. ^ Tye, S.-H. Henry; Wong, Sam S. C. (2015). "Bloch wave function for the periodic sphaleron potential and unsuppressed baryon and lepton number violating processes". Physical Review D. 92 (4): 045005. arXiv:1505.03690. Bibcode:2015PhRvD..92d5005T. doi:10.1103/PhysRevD.92.045005. S2CID 73528684.
  13. ^ Mine, Shunichi (2023). "Nucleon decay: theory and experimental overview". Zenodo. doi:10.5281/zenodo.10493165.
  14. ^ "Proton lifetime is longer than 1034 years". Kamioka Observatory. 25 November 2009. Archived from the original on 16 July 2011.
  15. ^ Sreekantan, B.V. (1984). "Searches for proton decay and superheavy magnetic monopoles" (PDF). Journal of Astrophysics and Astronomy. 5 (3): 251–271. Bibcode:1984JApA....5..251S. doi:10.1007/BF02714542. S2CID 53964771.
  16. ^ a b Nath, Pran; Fileviez Pérez, Pavel (2007). "Proton stability in grand unified theories, in strings and in branes". Physics Reports. 441 (5–6): 191–317. arXiv:hep-ph/0601023. Bibcode:2007PhR...441..191N. doi:10.1016/j.physrep.2007.02.010. S2CID 119542637.
  17. ^ Olive, K. A.; et al. (Particle Data Group) (2014). "Review of Particle Physics – N Baryons" (PDF). Chinese Physics C. 38 (9): 090001. arXiv:astro-ph/0601168. Bibcode:2014ChPhC..38i0001O. doi:10.1088/1674-1137/38/9/090001. S2CID 118395784.
  18. ^ Bueno, Antonio; Melgarejo, Antonio J; Navas, Sergio; Dai, Zuxiang; Ge, Yuanyuan; Laffranchi, Marco; Meregaglia, Anselmo; Rubbia, André (2007-04-11). "Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds". Journal of High Energy Physics. 2007 (4): 041. arXiv:hep-ph/0701101. Bibcode:2007JHEP...04..041B. doi:10.1088/1126-6708/2007/04/041. ISSN 1029-8479. S2CID 119426496.
  19. ^ Chanowitz, Michael S.; Ellis, John; Gaillard, Mary K. (3 October 1977). "The price of natural flavour conservation in neutral weak interactions". Nuclear Physics B. 128 (3): 506–536. Bibcode:1977NuPhB.128..506C. doi:10.1016/0550-3213(77)90057-8. ISSN 0550-3213. S2CID 121007369.

Further reading

Read other articles:

Імператор Ґо-Коґоняп. 後光厳天皇 Народився 23 березня 1338Помер 12 березня 1374 (35 років)Країна Японська ДержаваДіяльність правительПосада імператор ЯпоніїРід Імператорський дім ЯпоніїБатько Імператор КоґонМати Empress Dowager YōrokudБрати, сестри Імператор СукоУ шлюбі з Fujiwara no Nakakod, ...

 

سوزان ألبرز (بالألمانية: Susanne Albers)‏    معلومات شخصية الميلاد 10 يونيو 1965 (58 سنة)  غيورغسمارينهوته، ألمانيا الجنسية ألمانية عضوة في الأكاديمية الألمانية للعلوم ليوبولدينا،  وأكاديمية العلوم والآداب في ماينتس،  والأكاديمية البافارية للعلوم والعلوم الإنسانية  ا

 

Домінік Грівангл. Dominic Grieve Народився 24 травня 1956(1956-05-24)[1] (67 років)Ламбет, Великий Лондон, Лондон[d], Англія, Велика Британія[2]Країна  Велика БританіяДіяльність політик, баррістерAlma mater коледж Магдалени[d], Вестмінстерська школаd, Університет Вестмінсте

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Geografi Indonesia – berita · surat kabar · buku · cendekiawan · JSTORartikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu ...

 

Abdul Ahad MohmandLahir1 Januari 1959 (umur 64)Sardah, AfghanistanStatusPensiunKebangsaanAfghanistan (1959–2003)Jerman (2003–sekarang, naturalisasi)AlmamaterUniversitas KabulPekerjaanPilotKarier luar angkasaKosmonot Riset IntercosmosPangkatKolonelWaktu di luar angkasa8 hari 20 jam 26 menitSeleksi1988MisiMir EP-3 (Soyuz TM-6/Soyuz TM-5)Lambang misi Abdul Ahad Mohmand (bahasa Pashtun: عبدالاحد مومند; lahir 1 Januari 1959) adalah seorang mantan penerbang Angkatan Udara ...

 

Highway in California State Route 108SR 108 highlighted in redRoute informationMaintained by CaltransLength120 mi[1] (190 km)RestrictionsSegment through Sonora Pass closed in winterMajor junctionsWest end SR 99 / SR 132 in ModestoMajor intersections SR 120 from Oakdale to Yosemite Junction SR 49 from near Jamestown to Sonora East end US 395 near Bridgeport LocationCountryUnited StatesStateCaliforniaCountiesStanislaus, Tuolumn...

51°31′10″N 0°4′31″W / 51.51944°N 0.07528°W / 51.51944; -0.07528 Old Spitalfields Market Old Spitalfields Market is a covered market in Spitalfields, London. There has been a market on the site for over 350 years. In 1991 it gave its name to New Spitalfields Market in Leyton, where fruit and vegetables are now traded. In 2005, a regeneration programme resulted in the new public spaces: Bishops Square and Crispin Place, which are now part of the modern Spital...

 

4th-century BC Greek Cynic philosopher For other uses, see Diogenes (disambiguation). Diogenes of SinopeStatue of Diogenes in Sinop, TurkeyBorn412 or 404 BCSinope, Paphlagonia(modern-day Sinop, Turkey)Died323 BC (aged 81 or 89)Corinth, GreeceEraAncient Greek philosophyRegionWestern philosophySchoolCynicismNotable ideasCosmopolitanism Diogenes (/daɪˈɒdʒɪniːz/ dy-OJ-in-eez; Ancient Greek: Διογένης, romanized: Diogénēs [di.oɡénɛːs]), also known as Diogenes the Cy...

 

District in Republic of Tatarstan, RussiaAznakayevsky District Азнакаевский районDistrictOther transcription(s) • TatarАзнакай районыChatyr-Tau Nature Area, Aznakayevsky District FlagCoat of armsLocation of Aznakayevsky District in the Republic of TatarstanCoordinates: 54°54′N 53°06′E / 54.900°N 53.100°E / 54.900; 53.100CountryRussiaFederal subjectRepublic of TatarstanEstablished30 October 1931Administrative center...

Amateur wrestling governing body United World WrestlingAbbreviationUWWFormation1912; 111 years ago (1912)TypeSports federationHeadquartersCorsier-sur-Vevey, outside of Lausanne, SwitzerlandMembership Representatives from 176 national federationsPresidentNenad Lalović[1]Revenue (2017) US$5.12 million[2]Expenses (2017)US$8.89 million[2]WebsiteUWW.org United World Wrestling (UWW) is the international governing body for the sport of amateur wrestling; it...

 

World Wrestling Entertainment pay-per-view event Survivor SeriesPromotional poster featuring The UndertakerPromotionWorld Wrestling EntertainmentBrand(s)RawSmackDown!DateNovember 27, 2005CityDetroit, MichiganVenueJoe Louis Arena[1]Attendance15,000[2]Buy rate400,000[3]Tagline(s)The Beginning of the EndPay-per-view chronology ← PreviousTaboo Tuesday Next →Armageddon Survivor Series chronology ← Previous2004 Next →2006 The 2005 Survivor Series ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2012. Celurut Kalimantan Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Soricomorpha Famili: Soricidae Genus: Crocidura Spesies: C. foetida Nama binomial Crocidura foe...

John Porter HatchJohn Porter HatchLahir(1822-01-09)9 Januari 1822Oswego, New YorkMeninggal12 April 1901(1901-04-12) (umur 79)New York City, New YorkTempat pemakamanArlington National CemeteryPengabdianAmerika SerikatUnionDinas/cabangAngkatan Darat Amerika SerikatUnion ArmyLama dinas1845–1886Perang/pertempuranPerang Meksiko–AmerikaPerang Saudara AmerikaPenghargaanMedal of Honor John Porter Hatch (9 Januari 1822 – 12 April 1901) adalah seorang prajurit Amerika Seri...

 

History of the Malaysian state of Penang George Town, the capital city of the State of Penang, at dusk Historical populationYearPop.±%1881 190,597—    1891 231,224+21.3%1901 247,808+7.2%1911 278,003+12.2%1921 304,335+9.5%1931 359,851+18.2%1947 446,321+24.0%1957 572,100+28.2%1970 776,124+35.7%1980 900,772+16.1%1991 1,064,166+18.1%2000 1,231,209+15.7%2010 1,526,324+24.0%2020 1,740,405+14.0%Source: [1][2][3][4] The State of Penang, one of th...

 

Concept of permanent human habitation outside of Earth This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) You can help expand this article with text translated from the corresponding article in French. (January 2023) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a usef...

Samaria, atau Shomron (bahasa Ibrani: שומרון, bahasa Ibrani standar Šoməron bahasa Ibrani Tiberias Šōmərôn; bahasa Arab: سامريّون, Sāmariyyūn atau ألسامرة, as-Sāmirah – juga dikenal sebagai جبال نابلس, Jibal Nablus; bahasa Yunani: Σαμαρεία, Samareia) adalah sebuah istilah geografis yang digunakan untuk wilayah pegunungan antara Galilea di utara dan Yudea di selatan. Nama ini digunakan untuk wilayah alam, historis, dan politik. Daerah ini terlet...

 

2021 British film A Brixton TaleDirected byDarragh CareyBertrand DesrochersScreenplay byRupert BaynhamDarragh CareyChi MaiProduced byRupert BaynhamDarragh CareyBeau RamautStarringLily NewmarkOla OrebiyiCraige MiddleburgJaime WinstoneDexter PadmoreCinematographyKristof BrandlEdited byDerek HollandMusic byPeter VenneProductioncompaniesBWGTBLDParadox HouseReprobate FilmsThe Damned CrewDistributed byBulldog Film DistributionParkland PicturesRelease date 12 February 2021 (2021-02-12...

 

Professional wrestling tag team Professional wrestling tag team Basham BrothersDanny Basham (left) and Doug Basham (right) in 2005.Tag teamMembersDoug BashamDanny BashamName(s)Basham BrothersBasham and DamajaBashumsPaul Heyman's Personal EnforcersRevolutionBashams & ShaniquaBilled heightsDoug Basham: 6 ft 2 in (1.88 m)Danny Basham: 6 ft 3 in (1.91 m)Combinedbilled weight495 lb (225 kg)[1]Billed fromColumbus, Ohio[1]Formermember(s)Sha...

Synthetic opioid PiritramideClinical dataTrade namesDipidolorAHFS/Drugs.comInternational Drug NamesPregnancycategory No teratogenic effects in preclinical studies; but, as with other opioids it may cause reversible adverse effects in the newborn. Routes ofadministrationOral, IM, IVATC codeN02AC03 (WHO) Legal statusLegal status AU: S8 (Controlled drug) BR: Class A1 (Narcotic drugs)[1] CA: Schedule I DE: Anlage III (Special prescription form required) US:&#...

 

Resolusi 7Dewan Keamanan PBBBendera Spanyol era FrancoTanggal26 Juni 1946Sidang no.49KodeS/RES/7 (Dokumen)TopikDampak kediktatoran Spanyol terhadap perdamaian dan keamanan internasionalHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok (ROC) Prancis Britania Raya Amerika Serikat Uni SovietAnggota tidak tetap Australia Brasil Mesir Meksiko Belanda Polandia Resolusi 7 Dewan Keamanan Perserikatan Bangsa-Bangsa, diadopsi pa...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!