Projective hierarchy

In the mathematical field of descriptive set theory, a subset of a Polish space is projective if it is for some positive integer . Here is

  • if is analytic
  • if the complement of , , is
  • if there is a Polish space and a subset such that is the projection of onto ; that is,

The choice of the Polish space in the third clause above is not very important; it could be replaced in the definition by a fixed uncountable Polish space, say Baire space or Cantor space or the real line.

Relationship to the analytical hierarchy

There is a close relationship between the relativized analytical hierarchy on subsets of Baire space (denoted by lightface letters and ) and the projective hierarchy on subsets of Baire space (denoted by boldface letters and ). Not every subset of Baire space is . It is true, however, that if a subset X of Baire space is then there is a set of natural numbers A such that X is . A similar statement holds for sets. Thus the sets classified by the projective hierarchy are exactly the sets classified by the relativized version of the analytical hierarchy. This relationship is important in effective descriptive set theory. Stated in terms of definability, a set of reals is projective iff it is definable in the language of second-order arithmetic from some real parameter.[1]

A similar relationship between the projective hierarchy and the relativized analytical hierarchy holds for subsets of Cantor space and, more generally, subsets of any effective Polish space.

Table

Lightface Boldface
Σ0
0
= Π0
0
= Δ0
0
(sometimes the same as Δ0
1
)
Σ0
0
= Π0
0
= Δ0
0
(if defined)
Δ0
1
= recursive
Δ0
1
= clopen
Σ0
1
= recursively enumerable
Π0
1
= co-recursively enumerable
Σ0
1
= G = open
Π0
1
= F = closed
Δ0
2
Δ0
2
Σ0
2
Π0
2
Σ0
2
= Fσ
Π0
2
= Gδ
Δ0
3
Δ0
3
Σ0
3
Π0
3
Σ0
3
= Gδσ
Π0
3
= Fσδ
Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= arithmetical
Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= boldface arithmetical
Δ0
α
recursive)
Δ0
α
countable)
Σ0
α
Π0
α
Σ0
α
Π0
α
Σ0
ωCK
1
= Π0
ωCK
1
= Δ0
ωCK
1
= Δ1
1
= hyperarithmetical
Σ0
ω1
= Π0
ω1
= Δ0
ω1
= Δ1
1
= B = Borel
Σ1
1
= lightface analytic
Π1
1
= lightface coanalytic
Σ1
1
= A = analytic
Π1
1
= CA = coanalytic
Δ1
2
Δ1
2
Σ1
2
Π1
2
Σ1
2
= PCA
Π1
2
= CPCA
Δ1
3
Δ1
3
Σ1
3
Π1
3
Σ1
3
= PCPCA
Π1
3
= CPCPCA
Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= analytical
Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= P = projective


See also

References

  1. ^ J. Steel, "What is... a Woodin cardinal?". Notices of the American Mathematical Society vol. 54, no. 9 (2007), p.1147.
  • Kechris, A. S. (1995), Classical Descriptive Set Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94374-9
  • Rogers, Hartley (1987) [1967], The Theory of Recursive Functions and Effective Computability, First MIT press paperback edition, ISBN 978-0-262-68052-3

Read other articles:

Type of cake For other uses, see Pound Cake (disambiguation). Pound cakeA pound cake that has been baked in a loaf pan.Main ingredientsFlour, butter, sugar, and eggsVariationsAddition of flavorings or dried fruits  Media: Pound cake Pound cake is a type of cake traditionally made with a pound of each of four ingredients: flour, butter, eggs, and sugar. Pound cakes are generally baked in either a loaf pan or a Bundt mold. They are sometimes served either dusted with powdered sugar, li...

 

WK veldrijden 2022 Meisjes junioren Datum 29 januari 2022 Starttijd 11:00 (UTC−6)18:00 (UTC+1) uur Plaats Vlag van Verenigde Staten Fayetteville, Verenigde Staten Editie 2 Auspiciën UCI Prijzengeld € 2.265 Uitslag Vlag van Verenigd Koninkrijk Zoe Bäckstedt 41'16 2e Leonie Bentveld + 32 3e Lauren Molengraaf + 57 Navigatie ← 2020     2023 → Veldrijden Portaal    Wielersport Wereldkampioen-schappen veldrijden 2022ElitemannenvrouwenBeloftenmannenvrouwenJuniorenjongen...

 

P&O Nedlloyd P&O Nedlloyd Atividade Shipping Sede Rotterdam Área(s) servida(s) Worldwide Antecessora(s) Nedlloyd Website oficial www.ponl.com Containers com as marcas das empresas Zeelandia at New York Zeelandia absorvido pelos Norte-Americanos durante a guerra P&O Nedlloyd Container Line Limited foi uma empresa anglo-holandeza de navegação própria especializada em transporte de containers e logística com sedes em Londres e Roterdã. As ações da empresa Royal P&O Nedllo...

Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Sa'ad bin Abi Waqqas – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Sa'ad bin Sjshsjhshehe Abi W...

 

Герб Каракаса ДеталіНосій Каракас Герб Каракаса — офіційний геральдичний символ міста Каракаса, столиці Венесуели. Опис та символізм Герб Каракаса є геральдичним щитом, оточеним золотою стрічкою. На синьому полі герба розміщено зображення лева з язиком червоного кол

 

The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: SL Agritech Corporation – news · newspapers · books · sc...

Resolution procedure of the EU banking union This article needs to be updated. Please help update this article to reflect recent events or newly available information. (January 2023) Regulation 806/2014European Union regulationTitleEstablishing uniform rules and a uniform procedure for the resolution of credit institutions and certain investment firms in the framework of a Single Resolution Mechanism and a Single Resolution FundApplicabilityAll EU members. SRM provisions however only apply to...

 

العلاقات الألمانية البوليفية ألمانيا بوليفيا   ألمانيا   بوليفيا تعديل مصدري - تعديل   العلاقات الألمانية البوليفية هي العلاقات الثنائية التي تجمع بين ألمانيا وبوليفيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

 

  لمعانٍ أخرى، طالع صمود الرجل الأخير (توضيح).هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2021) صمود الرجل الاخيرLast Man Standing (بالإنجليزية) معلومات عامةالصنف الفني فيلم أكشن[1][2] — فيلم جريمة — في...

British financier (1931–2022) This article is about the financier born in 1931. For his uncle, who was also a banker, see Evelyn de Rothschild (born 1886). SirEvelyn de RothschildFKCBornEvelyn Robert Adrian de Rothschild(1931-08-29)29 August 1931London, Middlesex, EnglandDied7 November 2022(2022-11-07) (aged 91)London, Greater London, Middlesex, EnglandAlma materTrinity College, CambridgeSpouses Jeannette Bishop ​ ​(m. 1966; div. 1971)R...

 

Uruguayan politician In this Spanish name, the first or paternal surname is Pou and the second or maternal family name is Pino del Brito. Julia PouSenator of UruguayIn office2000–2005First Lady of UruguayIn officeMarch 1, 1990 – March 1, 1995PresidentLuis Alberto LacallePreceded byMarta CanessaSucceeded byMarta Canessa Personal detailsBornMaría Julia Pou Brito del Pino (1947-06-10) 10 June 1947 (age 76)Montevideo, UruguayPolitical partyNational PartySpouse Luis Albe...

 

Canadian-American pastor and author James MacDonaldBorn (1960-10-04) October 4, 1960 (age 63)London, Ontario, CanadaNationalityCanadianOccupation(s)Pastor, author, Bible teacherSpouseKathy MacDonald James MacDonald (born October 4, 1960) is a Canadian-born evangelical Christian pastor, television evangelist, and author. He was the senior pastor of Harvest Bible Chapel megachurch in Rolling Meadows, Illinois, United States[1][2] and was the host for the church's former bro...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Jhonny Thio DoranLahir18 Juni 1986 (umur 37)KebangsaanIndonesiaDikenal atasCEO Doran Group & JETE Indonesia Jhonny Thio Doran adalah pengusaha berkebangsaan Indonesia.[1] Ia merupakan CEO dari PT. Doran Sukses Indonesia (sejak tahun 20...

 

Sports season2017–18 KHL seasonLeagueKontinental Hockey LeagueSportIce hockeyDuration21 August 2017 – 22 April 2018Number of games56Number of teams27Regular seasonContinental Cup winnerSKA Saint PetersburgTop scorer Ilya KovalchukWestern championsCSKA Moscow  Western runners-upSKA Saint PetersburgEastern championsAk Bars Kazan  Eastern runners-upTraktor ChelyabinskGagarin CupChampionsAk Bars Kazan  Runners-upCSKA MoscowFinals MVPJustin Azevedo KHL seasons←&...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2018) التدخين العكسي (بالإنجليزية: Reverse smoking)‏ هو نوع من التدخين حيث يتم وضع النهاية المحروقة لورق التبغ الملفوف باليد في الفم بدلا من نهاية السيجار غير المضاءة.[1...

SS Cavalry brigadeSS Cavalry Brigade of the Waffen-SS, 23 September 1941 USSRActive1940–1942Country Nazi GermanyBranch Waffen-SSTypeCavalrySizeBrigadeCommandersNotablecommandersHermann FegeleinMilitary unit The SS Cavalry Brigade (SS-Kavallerie-Brigade) was a unit of the German Waffen-SS during World War II. Operating under the control of the Kommandostab Reichsführer-SS, it initially performed rear security duties in German-occupied Poland. During the Invasion of the Soviet Union...

 

Francis CollinsDirektur National Institutes of HealthMasa jabatan17 Agustus 2009 – 19 Desember 2021PresidenBarack ObamaDonald TrumpJoe BidenPendahuluRaynard Kington (acting)PenggantiLawrence A. Tabak (acting) Informasi pribadiLahirFrancis Sellers Collins14 April 1950 (umur 73)Staunton, Virginia, Amerika SerikatSuami/istriDiane BakerAlma materUniversitas VirginiaUniversitas YaleUniversity of North Carolina,Chapel Hill Karier ilmiahDisertasiSemiclassical theory of vibrationally ...

 

У этого термина существуют и другие значения, см. Трам. Театр рабочей молодёжиТРАМ Тип театра молодёжный Основан 1925 Жанры Агитационный театр Места выступлений Ленинград, Москва и другие города СССР Здание театра Местоположение  СССР Руководство Ведомство ЦК ВЛКСМ  ...

Voce principale: Musei del Castello Sforzesco. Museo degli strumenti musicali UbicazioneStato Italia LocalitàMilano IndirizzoPiazza Castello Coordinate45°28′14″N 9°10′43″E / 45.470556°N 9.178611°E45.470556; 9.178611Coordinate: 45°28′14″N 9°10′43″E / 45.470556°N 9.178611°E45.470556; 9.178611 CaratteristicheTipomusica Apertura1958 ProprietàMilano Sito web Modifica dati su Wikidata · Manuale Il Museo degli strumenti musicali di...

 

Egyptian football club This article is about the club based in Giza, Egypt. For the club based in Al-Hasa, Saudi Arabia, see Al-Nojoom FC. Football clubNogoom FCFull nameNogoom Football ClubNickname(s)Future players (لعيبة المستقبل)Short nameNFCFounded29 December 2006; 16 years ago (2006-12-29)GroundNogoom Stadium, October, Giza, EgyptCapacity2,000Chairman Mohamed El TawilaLeagueEgyptian Third Division2019–20Egyptian Second Division, 8th Home colours Away colo...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!