Presheaf with transfers

In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences (defined below) to the category of abelian groups (in category theory, “presheaf” is another term for a contravariant functor).

When a presheaf F with transfers is restricted to the subcategory of smooth separated schemes, it can be viewed as a presheaf on the category with extra maps , not coming from morphisms of schemes but also from finite correspondences from X to Y

A presheaf F with transfers is said to be -homotopy invariant if for every X.

For example, Chow groups as well as motivic cohomology groups form presheaves with transfers.

Finite correspondence

Let be algebraic schemes (i.e., separated and of finite type over a field) and suppose is smooth. Then an elementary correspondence is an irreducible closed subscheme , some connected component of X, such that the projection is finite and surjective.[1] Let be the free abelian group generated by elementary correspondences from X to Y; elements of are then called finite correspondences.

The category of finite correspondences, denoted by , is the category where the objects are smooth algebraic schemes over a field; where a Hom set is given as: and where the composition is defined as in intersection theory: given elementary correspondences from to and from to , their composition is:

where denotes the intersection product and , etc. Note that the category is an additive category since each Hom set is an abelian group.

This category contains the category of smooth algebraic schemes as a subcategory in the following sense: there is a faithful functor that sends an object to itself and a morphism to the graph of .

With the product of schemes taken as the monoid operation, the category is a symmetric monoidal category.

Sheaves with transfers

The basic notion underlying all of the different theories are presheaves with transfers. These are contravariant additive functors

and their associated category is typically denoted , or just if the underlying field is understood. Each of the categories in this section are abelian categories, hence they are suitable for doing homological algebra.

Etale sheaves with transfers

These are defined as presheaves with transfers such that the restriction to any scheme is an etale sheaf. That is, if is an etale cover, and is a presheaf with transfers, it is an Etale sheaf with transfers if the sequence

is exact and there is an isomorphism

for any fixed smooth schemes .

Nisnevich sheaves with transfers

There is a similar definition for Nisnevich sheaf with transfers, where the Etale topology is switched with the Nisnevich topology.

Examples

Units

The sheaf of units is a presheaf with transfers. Any correspondence induces a finite map of degree over , hence there is the induced morphism

[2]

showing it is a presheaf with transfers.

Representable functors

One of the basic examples of presheaves with transfers are given by representable functors. Given a smooth scheme there is a presheaf with transfers sending .[2]

Representable functor associated to a point

The associated presheaf with transfers of is denoted .

Pointed schemes

Another class of elementary examples comes from pointed schemes with . This morphism induces a morphism whose cokernel is denoted . There is a splitting coming from the structure morphism , so there is an induced map , hence .

Representable functor associated to A1-0

There is a representable functor associated to the pointed scheme denoted .

Smash product of pointed schemes

Given a finite family of pointed schemes there is an associated presheaf with transfers , also denoted [2] from their Smash product. This is defined as the cokernel of

For example, given two pointed schemes , there is the associated presheaf with transfers equal to the cokernel of

[3]

This is analogous to the smash product in topology since where the equivalence relation mods out .

Wedge of single space

A finite wedge of a pointed space is denoted . One example of this construction is , which is used in the definition of the motivic complexes used in Motivic cohomology.

Homotopy invariant sheaves

A presheaf with transfers is homotopy invariant if the projection morphism induces an isomorphism for every smooth scheme . There is a construction associating a homotopy invariant sheaf[2] for every presheaf with transfers using an analogue of simplicial homology.

Simplicial homology

There is a scheme

giving a cosimplicial scheme , where the morphisms are given by . That is,

gives the induced morphism . Then, to a presheaf with transfers , there is an associated complex of presheaves with transfers sending

and has the induced chain morphisms

giving a complex of presheaves with transfers. The homology invariant presheaves with transfers are homotopy invariant. In particular, is the universal homotopy invariant presheaf with transfers associated to .

Relation with Chow group of zero cycles

Denote . There is an induced surjection which is an isomorphism for projective.

Zeroth homology of Ztr(X)

The zeroth homology of is where homotopy equivalence is given as follows. Two finite correspondences are -homotopy equivalent if there is a morphism such that and .

Motivic complexes

For Voevodsky's category of mixed motives, the motive associated to , is the class of in . One of the elementary motivic complexes are for , defined by the class of

[2]

For an abelian group , such as , there is a motivic complex . These give the motivic cohomology groups defined by

since the motivic complexes restrict to a complex of Zariksi sheaves of .[2] These are called the -th motivic cohomology groups of weight . They can also be extended to any abelian group ,

giving motivic cohomology with coefficients in of weight .

Special cases

There are a few special cases which can be analyzed explicitly. Namely, when . These results can be found in the fourth lecture of the Clay Math book.

Z(0)

In this case, which is quasi-isomorphic to (top of page 17),[2] hence the weight cohomology groups are isomorphic to

where . Since an open cover

Z(1)

This case requires more work, but the end result is a quasi-isomorphism between and . This gives the two motivic cohomology groups

where the middle cohomology groups are Zariski cohomology.

General case: Z(n)

In general, over a perfect field , there is a nice description of in terms of presheaves with transfer . There is a quasi-ismorphism

hence

which is found using splitting techniques along with a series of quasi-isomorphisms. The details are in lecture 15 of the Clay Math book.

See also

References

  1. ^ Mazza, Voevodsky & Weibel 2006, Definition 1.1.
  2. ^ a b c d e f g Lecture Notes on Motivic Cohomology (PDF). Clay Math. pp. 13, 15–16, 17, 21, 22.
  3. ^ Note giving

Read other articles:

ChurchSt John the Baptist Church, Buckhurst HillSt John the Baptist, Buckhurst Hill51°37′44.9″N 0°1′59.6″E / 51.629139°N 0.033222°E / 51.629139; 0.033222DenominationChurch of EnglandWebsiteSt John the Baptist ChurchHistoryFounded1837[1]DedicationSaint JohnArchitectureFunctional statusParish churchHeritage designationGrade IIDesignated29 May 1984[2]Architectural typeChurchAdministrationProvinceCanterburyDioceseChelmsfordArchdeaconryHarlowDean...

 

Ukrainian military officer (born 1965) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (September 2022) Oleksandr SyrskyiNative nameОлександр Станіславович СирськийBirth nameOleksandr Stanislavovych SyrskyiBorn (1965-07-26) 26 July 1965 (age 58)Novinki, Russian SFSR, Soviet Union (now Russia)Allegiance  Soviet Union (1986–1991)  Ukraine (1991–present) Service/branch...

 

Jalan desa di Langowan pada tahun 1910–an Rumah bagan di Langowan pada tahun 1924 Langowan adalah nama beberapa kecamatan di Kabupaten Minahasa, provinsi Sulawesi Utara. Langowan dapat mengacu pada beberapa hal berikut: Langowan Barat, Minahasa Langowan Selatan, Minahasa Langowan Timur, Minahasa Langowan Utara, Minahasa Halaman disambiguasi ini berisi daftar artikel nama tempat (yang terkadang berasal dari/digunakan sebagai nama orang) yang memiliki judul yang sama. Jika Anda mencapai halam...

CaliadiDirektorat Jenderal Bimbingan Masyarakat BuddhaMasa jabatan2 Agustus 2017 – 21 Desember 2021PresidenJoko WidodoMenteriLukman Hakim SaifuddinFachrul RaziYaqut Cholil QoumasPendahuluDasikinNur Syam (penjabat)PenggantiNyoman Suriadarma (pelaksana tugas) Informasi pribadiLahir(1964-12-31)31 Desember 1964Bentek, Lombok Utara, IndonesiaMeninggal28 Desember 2021(2021-12-28) (umur 56)RSPAD Gatot Subroto, Jakarta, IndonesiaSunting kotak info • L • B Caliadi, S.H., ...

 

Temporary ocean surface current Angola current is a temporary ocean surface current. It is an extension of the Guinea Current, flowing near western Africa's coast. It is known to have created similar effects in the upwelling as El Niño,[1] though its effect is weaker. See also Ocean current Oceanic gyres References ^ The Angola Current. vteOcean currents and gyresCurrentsArctic Ocean East Greenland North Icelandic Norwegian Transpolar Drift Stream Atlantic Ocean Angola Antilles Azore...

 

Eric Schaefer bei einem Konzert von [em] (Würzburger Hafensommer, 8. August 2010) Eric Schaefer (* 14. August 1976 in Frankfurt am Main) ist ein deutscher Jazzschlagzeuger. Inhaltsverzeichnis 1 Leben und Wirken 2 Preise und Auszeichnungen 3 Diskographische Hinweise 4 Weblinks 5 Einzelnachweise Leben und Wirken Schaefer spielt seit 1988 Schlagzeug. Die ersten Grundlagen lernte er an der Kreismusikschule Vechta bei Thomas Aldenhoff.[1] Er war Mitglied des Bundesjugendorchesters, nahm a...

Oslan HuseinLahirOslan Husein(1931-04-08)8 April 1931Padang, Sumatera Barat, Hindia BelandaMeninggal16 Agustus 1972(1972-08-16) (umur 41)JakartaNama lainOslanPekerjaanPenyanyiaktorTahun aktif1948–1971Suami/istriDarlius Nida Oslan Husein (8 April 1931 – 16 Agustus 1972), terkenal dengan mononim Oslan, adalah seorang penyanyi dan aktor Indonesia. Pada era 50-an Oslan terkenal karena menyanyikan lagu-lagu berbahasa Minang. Di antara lagu yang sangat populer dibaw...

 

Kawasaki Ki-32 (九八式軽爆撃機code: ja is deprecated , Kyuhachi-shiki keibakugekiki, Pembom ringan tipe 98) adalah pesawat pengebom ringan milik kekaisaran Jepang pada Perang Dunia II. Pesawat ini bermesin tunggal, dengan dua kursi, bersayap di tengah, kantilever monoplane dengan tailwheel undercarriage tetap. Sebuah rak bom internal dapat menampung £ 661 (300 kg), dilengkapi dengan bom £ 350 (150 kg) di rak eksternal. Selama perang, ia dikenal oleh Sekutu dengan nama Mary. Referensi...

 

2020 studio album by The Birthday MassacreDiamondsStudio album by The Birthday MassacreReleasedMarch 27, 2020RecordedDesolation Studios, Dire Studios, The Altar Studios Toronto, CanadaGenreElectronic rock, gothic rockLength37:33LabelMetropolisProducerMichael Rainbow, Michael FalcoreThe Birthday Massacre chronology Under Your Spell(2017) Diamonds(2020) Fascination(2022) Singles from Diamonds The Sky Will TurnReleased: January 24, 2020 The Last GoodbyeReleased: March 5, 2020 Diamonds is...

Международная Ленинская премия «За укрепление мира между народами» Страна  СССР Тип награда Кем вручается СССР Статус не вручается Статистика Дата учреждения 21 декабря 1949  Медиафайлы на Викискладе Медаль Международной Ленинской премии «За укрепление мира м...

 

American politician For the Irish cricketer, see Ross Adair. E. Ross AdairMember of the U.S. House of Representativesfrom Indiana's 4th districtIn officeJanuary 3, 1951 – January 3, 1971Preceded byEdward H. KruseSucceeded byJ. Edward RoushUnited States Ambassador to EthiopiaIn officeJuly 8, 1971 – February 12, 1974Preceded byWilliam O. HallSucceeded byArthur W. Hummel Jr. Personal detailsBorn(1907-12-14)December 14, 1907Albion, Indiana, USDiedMay 5, 1983(1983...

 

Stadion MadejskiMad StadInformasi stadionNama lengkapStadion MadejskiPemilikRFC Holdings LtdLokasiLokasiJunction 11M4 motorwayReading, Berkshire RG2 0FL InggrisKoordinat51°25′20″N 0°58′58″W / 51.42222°N 0.98278°W / 51.42222; -0.98278Koordinat: 51°25′20″N 0°58′58″W / 51.42222°N 0.98278°W / 51.42222; -0.98278KonstruksiDibuka22 Agustus 1998Biaya pembuatan£50m +Data teknisPermukaanRumput (Desso GrassMaster)[2]Ka...

This article relies largely or entirely on a single source. Please help improve this article by introducing citations to additional sources.Find sources: Bangladesh at the 2023 World Athletics Championships – news · newspapers · books · scholar · JSTOR (August 2023) Sporting event delegationBangladesh at the2023 World Athletics ChampionshipsFlag of BangladeshWA codeBANin Budapest, Hungary19 August 2023 (2023-08-19) – 27 Augus...

 

2010 concert tour by Pink This article is about the 2010 concert tour. For the preceding concert tour, see Funhouse Tour. The Funhouse Summer Carnival TourEuropean tour by PinkAssociated albumFunhouseStart dateMay 29, 2010 (2010-05-29)End dateJuly 25, 2010 (2010-07-25)Legs1No. of shows34Box office$46.4 millionPink concert chronology Funhouse Tour(2009) The Funhouse Summer Carnival Tour(2010) The Truth About Love Tour(2013–14) The Funhouse Summer Carnival Tour w...

 

Canadian professional wrestler Sky Low LowBirth nameMarcel GauthierBorn(1928-07-21)July 21, 1928Montreal, Quebec, CanadaDiedNovember 6, 1998(1998-11-06) (aged 70)[1]Professional wrestling careerRing name(s)Sky Low LowBilled height3 ft 6 in (107 cm)[1]Billed weight86 lb (39 kg)[1][2]Billed fromMontreal, Quebec, Canada[2]Debut1940s[1]Retired1980s Marcel Gauthier[1] (July 21, 1928 – November 6, 1998) was a Ca...

Engalus Разработчик Crytek Издатель не был анонсирован Дата анонса сентябрь 2000 года Дата выпуска игра отменена Версия игра отменена Жанры шутер от первого лица, компьютерная ролевая игра Технические данные Платформы ПК, PlayStation 2, Dreamcast, Xbox, GameCube Движок CryEngine Режимы игры однополь...

 

Bandar Udara Syukuran Aminuddin AmirSyukuran Aminuddin Amir AirportIATA: LUWICAO: WAMWInformasiJenisPublikMelayaniLuwukLokasiKabupaten Banggai, Sulawesi Tengah, IndonesiaKetinggian dpl17,07 mdplKoordinat01°02′20″S 122°46′19″E / 1.03889°S 122.77194°E / -1.03889; 122.77194Koordinat: 01°02′20″S 122°46′19″E / 1.03889°S 122.77194°E / -1.03889; 122.77194PetaLUWBandara di daerah SulawesiLandasan pacu Arah Panjang Permu...

 

جزء من سلسلة مقالات حولالعنف ضد المرأة القضايا اعتداءات رش الحمض كي الثدي العنف خلال فترة المواعدة حرق العروس عنف العلاقات عنف أسري لمحة عن العنف الأسري معالجة العنف الأسري العنف الأسري والحمل عنف الشريك الحميم قتل بسبب المهور إغاظة حوائية جرائم الشرف ختان الإناث ختان جي...

Chilean footballer (born 1996) In this Spanish name, the first or paternal surname is Monreal and the second or maternal family name is Villablanca. Josepablo Monreal Josepablo playing with CobreloaPersonal informationFull name Josepablo Monreal VillablancaDate of birth (1996-04-01) 1 April 1996 (age 27)Place of birth Santiago, ChileHeight 1.90 m (6 ft 3 in)Position(s) StrikerTeam informationCurrent team Unión San FelipeYouth career2005–2010 Colo-Colo2015 Monter...

 

English idiom George Cruikshank (27 September 1792 – 1 February 1878) cartoon about teaching Grandma to suck eggs Teaching (your) grandmother to suck eggs is an English language saying that refers to a person giving advice to another person in a subject with which the other person is already familiar (and probably more so than the first person).[1] Look up teach grandma how to suck eggs in Wiktionary, the free dictionary. Origins of the phrase The origins of the phrase are not clear...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!