Power-law fluid

In continuum mechanics, a power-law fluid, or the Ostwald–de Waele relationship, is a type of generalized Newtonian fluid (time-independent non-Newtonian fluid) for which the shear stress, τ, is given by

where:

  • K is the flow consistency index (SI units Pa·sn),
  • u/y is the shear rate or the velocity gradient perpendicular to the plane of shear (SI unit s−1), and
  • n is the flow behavior index (dimensionless).

The quantity

represents an apparent or effective viscosity as a function of the shear rate (SI unit Pa s). The value of K and n can be obtained from the graph of and . The slope line gives the value of n – 1, from which n can be calculated. The intercept at gives the value of .

Also known as the Ostwald–de Waele power law after Wilhelm Ostwald and Armand de Waele.[1][2] This mathematical relationship is useful because of its simplicity, but only approximately describes the behaviour of a real non-Newtonian fluid. For example, if n were less than one, the power law predicts that the effective viscosity would decrease with increasing shear rate indefinitely, requiring a fluid with infinite viscosity at rest and zero viscosity as the shear rate approaches infinity, but a real fluid has both a minimum and a maximum effective viscosity that depend on the physical chemistry at the molecular level. Therefore, the power law is only a good description of fluid behaviour across the range of shear rates to which the coefficients were fitted. There are a number of other models that better describe the entire flow behaviour of shear-dependent fluids, but they do so at the expense of simplicity, so the power law is still used to describe fluid behaviour, permit mathematical predictions, and correlate experimental data.

Power-law fluids can be subdivided into three different types of fluids based on the value of their flow behaviour index:

n Type of fluid
<1 Pseudoplastic
1 Newtonian fluid
>1 Dilatant (less common)

Pseudoplastic fluids

Pseudoplastic, or shear-thinning are those fluids whose behaviour is time independent and which have a lower apparent viscosity at higher shear rates, and are usually solutions of large, polymeric molecules in a solvent with smaller molecules. It is generally supposed that the large molecular chains tumble at random and affect large volumes of fluid under low shear, but that they gradually align themselves in the direction of increasing shear and produce less resistance.

A common household example of a strongly shear-thinning fluid is styling gel, which is primarily composed of water and a fixative such as a vinyl acetate/vinylpyrrolidone copolymer (PVP/PA). If one were to hold a sample of hair gel in one hand and a sample of corn syrup or glycerine in the other, they would find that the hair gel is much harder to pour off the fingers (a low shear application), but that it produces much less resistance when rubbed between the fingers (a high shear application).[3]

This type of behavior is widely encountered in solutions or suspensions. In these cases, large molecules or fine particles form loosely bounded aggregates or alignment groupings that are stable and reproducible at any given shear rate. But these fluids rapidly and reversibly break down or reform with an increase or decrease in shear rate. Pseudo plastic fluids show this behavior over a wide range of shear rates; however often approach a limiting Newtonian behavior at very low and very high rates of shear. These Newtonian regions are characterized by the viscosities and respectively.

Newtonian fluids

A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate:

These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

While this holds true for relatively low shear rates, at high rates most oils in reality also behave in a non-Newtonian fashion and thin. Typical examples include oil films in automotive engine shell bearings and to a lesser extent in geartooth contacts.

Dilatant fluids

Dilatant, or shear-thickening fluids increase in apparent viscosity at higher shear rates.

They are in common use in viscous couplings in automobiles. When both ends of the coupling are spinning at the same rotational speed, the viscosity of the dilatant fluid is minimal, but if the ends of the coupling differ in speed, the coupling fluid becomes very viscous. They are used to prevent all of the torque from going to one wheel when the traction on that wheel drops, e.g. when one wheel is on ice. The viscous coupling between the two driven wheels ensures that both wheels turn at the same rate, providing torque to the wheel that is not slipping. Viscous couplings are also used to keep the front axle and the rear axle spinning at the same rate in four-wheel drive passenger automobiles.

Dilatant fluids are rarely encountered in everyday situations. One common example is an uncooked paste of cornstarch and water, sometimes known as oobleck. Under high shear rates, the water is squeezed out from between the starch molecules, which are able to interact more strongly, enormously increasing the viscosity.

While not strictly a dilatant fluid, Silly Putty (viscoelastic fluid) is an example of a material that shares these viscosity characteristics.

Velocity profile in a circular pipe

Just like a Newtonian fluid in a circular pipe gives a quadratic velocity profile (see Hagen–Poiseuille equation), a power-law fluid will result in a power-law velocity profile,

where u(r) is the (radially) local axial velocity, dp/dz is the pressure gradient along the pipe, and R is the pipe radius.

See also

References

  1. ^ e.g. G. W. Scott Blair et al., J. Phys. Chem., (1939) 43 (7) 853–864. Also the de Waele-Ostwald law, e.g Markus Reiner et al., Kolloid Zeitschrift (1933) 65 (1) 44-62
  2. ^ Ostwald called it the de Waele-Ostwald equation: Kolloid Zeitschrift (1929) 47 (2) 176-187
  3. ^ Saramito, Pierre (2016). Complex fluids: Modeling and Algorithms (PDF). Cham, Switzerland: Springer International Publishing Switzerland. p. 65. ISBN 978-3-319-44362-1. https://web.archive.org/web/20180803200251/https://www.springer.com/cda/content/document/cda_downloaddocument/9783319443614-c2.pdf?SGWID=0-0-45-1593584-p180195027

Read other articles:

Untuk orang lain dengan nama yang sama, lihat Michael Shannon (disambiguasi). Michael ShannonShannon di 2015 Toronto International Film FestivalLahirMichael Corbett Shannon7 Agustus 1974 (umur 49)Lexington, Kentucky, A.S.Tempat tinggalNew York City, New York, A.S.PekerjaanAktor, musisiTahun aktif1991–sekarangPasanganKate Arrington ​(m. 2002)​Anak2 Michael Corbett Shannon (lahir 7 Agustus 1974)[1][2] adalah aktor dan musisi Amerika Serik...

 

Integrantes de EWKE con Katherine Maher, presidenta de la Fundación Wikimedia, en 2019 Euskal Wikilarien Kultura Elkartea (en euskera, 'Asociación Cultural de Wikipedistas Vascos') es una asociación sin ánimo de lucro fundada en 2016 para la promoción y desarrollo de la Wikipedia en euskera, y por extensión, de los wikiproyectos hermanos en este idioma.[1]​[2]​ Su actual presidente es Luistxo Fernandez. En 2017 firmaron junto con el Gobierno Vasco el convenio Kalitatezko 1.0...

 

  「俄乌关系」重定向至此。关于其他用法,请见「俄烏關係 (消歧義)」。 俄罗斯—乌克兰關係 俄羅斯 烏克蘭 俄羅斯—烏克蘭關係,又稱俄乌关系、乌俄关系,是指俄罗斯和烏克蘭之間的雙邊關係。兩國在1991年蘇聯解體後建交,當時俄羅斯在烏克蘭首都基輔設有駐烏大使館,亦在烏克蘭城市哈爾科夫、利沃夫和敖德薩設領事館;烏克蘭則在俄羅斯莫斯科設駐俄大使...

Urban-type settlement in CrimeaMolodizhne МолодіжнеUrban-type settlementMolodizhneLocation in CrimeaCoordinates: 45°00′N 34°03′E / 45.000°N 34.050°E / 45.000; 34.050CountryDisputed Russia,  UkraineRepublicCrimeaRaionSimferopol RaionTown founded1972Area • Total0.45 km2 (0.17 sq mi)Elevation300 m (1,000 ft)Population (2014) • Total7,597Time zoneUTC+3 (MSK)Postal code97501Area code+380 652 Mo...

 

Mary Wortley Montagu, door Charles Jervas Mary en haar zoon Edward, geschilderd door Jean-Baptiste van Mour rond 1717. Lady Montagu in Ottomaanse klederdracht (Jean-Étienne Liotard, ca. 1756) Lady Mary Wortley Montagu (geboren Mary Pierrepont, Thoresby Hall, Nottinghamshire, gedoopt op 26 mei 1689 – Londen, 21 augustus 1762) was een Engels aristocraat, poëet en schrijfster. Biografie Zij was een dochter van Evelyn Pierrepont, destijds graaf van Kingston, later markies van Dorchester en he...

 

  لمعانٍ أخرى، طالع رفائيل إيتان (توضيح). رافائيل إيتان معلومات شخصية الميلاد 11 يناير 1929(1929-01-11)تل عدشيم الوفاة 23 نوفمبر 2004 (75 سنة)ميناء أشدود تعديل مصدري - تعديل   رفائيل ايتان (بالعبرية: רפאל רפול איתן)‏ (11 يناير 1929 - 23 نوفمبر 2004) هو وزير إسرائيلي سابق ورئيس هيئة الأركان...

Veronica Mars Kristen Bell Creado por Rob ThomasInterpretado por Kristen Bell Información personalNacimiento 1987Nacionalidad EstadounidenseCaracterísticas físicasRaza BlancaSexo FemeninoPareja(s) Duncan Kane y Stosh Piz PiznarskiCónyuge Logan EchollsInformación profesionalOcupación Detective[editar datos en Wikidata] Veronica Mars es la protagonista ficticia, narradora ocasional (a través de voces en off) y antiheroína de la serie de televisión estadounidense Veronica Mars...

 

Cet article présente la liste des généraux français et étrangers ayant servi dans les armées de la Révolution et du Premier Empire français. Au total 2 389 généraux servirent entre le 20 avril 1792 et juin 1815 (fin des Cent-Jours). Plus de 220 (près de 10 %) ont été tués sur les champs de bataille ou sont morts des suites de blessures[1]. Plus de 1 500 d’entre eux servirent sous Napoléon Ier. Note : Le grade de lieutenant-général devient le 21...

 

New Zealand politician (1818–1896) For other people named James FitzGerald, see James FitzGerald (disambiguation). The HonourableJames FitzGeraldJames Edward Fitzgerald ca 18906th Minister of Native AffairsIn office12 August 1865 – 16 October 1865Member of the New Zealand Parliamentfor LytteltonIn office1853–1857Member of the New Zealand Parliamentfor EllesmereIn office1862–1866Member of the New Zealand Parliamentfor City of ChristchurchIn office1866–18671st Superintendent ...

Boxing without use of boxing gloves Fisticuffs redirects here. For the Irish punk rock band, see The Fisticuffs. Bare-knuckle boxingIrish-American fighter John L. SullivanAlso known asClassical pugilismfisticuffsfist fightillegal boxingprizefightingFocusStrikinggrapplingCountry of originEnglandParenthoodAncient Greek boxingstreet fighting Bare-knuckle boxing (also known as bare-knuckle or bare-knuckle fighting) is a full-contact combat sport based on punching without any form of padding on th...

 

Demographics of the Republic of TurkeyTurkey population pyramid in 2020Population 85,279,553(31 December 2022)Growth rate 0.55% (2020)Birth rate 12.2 births/1,000population (2022)Death rate 5.9 deaths/1,000population (2022)Life expectancy 78.6 years (2020) • male 75.9 years (2020) • female 81.3 years (2020)Fertility rate 1.62 children born/woman (2022)[1]Infant mortality rate 8.6 deaths/1000 infants (2020)Age structure0–14 years 22% (2022)15–64 years 68.1% ...

 

2010 film by Vysakh Pokkiri RajaPromotional posterDirected byVysakhWritten byUdaykrishnaSibi K. ThomasProduced byTomichan MulakupadamStarringMammoottyPrithviraj SukumaranShriya SaranCinematographyShaji KumarEdited byMahesh NarayananMusic byScoreC. RajamaniSongsJassie GiftProductioncompanyMulakuppadam FilmsDistributed byMulakuppadam ReleaseRelease date 7 May 2010 (2010-05-07) (India) Running time165 minutesCountryIndiaLanguageMalayalam Pokkiri Raja (transl. Rogue King)...

Centered figurate number Star numberFirst four star numbers, by color.Total no. of termsinfinityFormula S n = 6 n ( n − 1 ) + 1 {\displaystyle S_{n}=6n(n-1)+1} First terms1, 13, 37, 73, 121, 181OEIS indexA003154star The Chinese checkers board has 121 holes. A star number is a centered figurate number, a centered hexagram (six-pointed star), such as the Star of David, or the board Chinese checkers is played on. 1 13 37 The nth star number is given by the formula Sn = 6n(n − 1) + ...

 

1999 aircraft hijacking Indian Airlines Flight 814Taliban men in front of the hijacked plane in KandaharHijackingDate24 December 1999 – 31 December 1999SiteHijacked in Indian airspace between Kathmandu, Nepal and Delhi, India; landed at Amritsar, India; Lahore, Pakistan; Dubai, United Arab Emirates; and Kandahar, Afghanistan.AircraftAircraft typeAirbus A300B2-101OperatorIndian AirlinesRegistrationVT-EDWFlight originTribhuvan International AirportKathmandu, Nepal1st stopoverRaja Sansi A...

 

Tennis tournamentHalle OpenTournament informationTourATP TourFounded1993; 30 years ago (1993)Editions30 (2023)LocationHalle (Westfalen), GermanyVenueGerry Weber StadionCategoryATP World Series /ATP International Series /ATP World Tour 250 series (1993–2014)ATP World Tour 500 series(2015 onwards)SurfaceGrass (Outdoor)Draw32S / 32Q / 16DPrize money€2,195,175 (2023)Websiteterrawortmann-open.deCurrent champions (2023)Singles Alexander BublikDoubles Marcelo Melo John Pee...

Village in Andhra Pradesh, India Mahanandi TempleMahanandiReligionAffiliationHinduismDistrictNandyal districtDeityShivaFestivalsMaha Shivaratiri, Kartik PurnimaLocationLocationNandyalStateAndhra PradeshCountryIndiaLocation in Andhra PradeshGeographic coordinates15°28′14″N 78°37′34″E / 15.47056°N 78.62611°E / 15.47056; 78.62611ArchitectureTypeDravidian architecture Navanandi Schematic route map from Nandyal Mahanandi is a village located east of the Nallamal...

 

2004 video game 2004 video gameChessmaster 10th EditionDeveloper(s)Ubisoft Romania[4]Publisher(s)UbisoftSeriesChessmasterPlatform(s)Windows, XboxReleaseWindowsNA: August 10, 2004[2]EU: October 21, 2004[1]XboxNA: November 1, 2004[3]Genre(s)Computer chessMode(s)Single-player, multiplayer Chessmaster 10th Edition is a 2004 chess video game developed and published by Ubi Soft for the Windows and Xbox. It is part of the Chessmaster series. The Xbox version is titled...

 

Chemical compound D-15414Identifiers IUPAC name 1-ethyl-2-(4-hydroxyphenyl)-3-methylindol-5-ol CAS Number86111-11-7 YPubChem CID128800ChemSpider114137UNII58AE9Z8TW6ChEMBLChEMBL287232CompTox Dashboard (EPA)DTXSID801006609 Chemical and physical dataFormulaC17H17NO2Molar mass267.328 g·mol−13D model (JSmol)Interactive image SMILES CCN1C2=C(C=C(C=C2)O)C(=C1C3=CC=C(C=C3)O)C InChI InChI=1S/C17H17NO2/c1-3-18-16-9-8-14(20)10-15(16)11(2)17(18)12-4-6-13(19)7-5-12/h4-10,19-20H,3H2,1-2H3Key:B...

Toshiko AkiyoshiToshiko Akiyoshi, 1978Informasi latar belakangNama lahirToshiko Akiyoshi (穐吉 敏子code: ja is deprecated , Akiyoshi Toshiko)Nama lainToshiko, Toshiko Mariano, 秋吉 敏子Lahir12 Desember 1929 (umur 93)Liaoyang, Manchuria, ChinaAsalBeppuGenreJazzPekerjaanMusisi, komposer, arrangerInstrumenPianoTahun aktif1946–sekarangLabelNorgran, Columbia, Victor, RCA Victor, Discomate, Inner City, Nippon CrownArtis terkaitToshiko Akiyoshi Jazz Orchestra, Toshiko Akiyoshi – Lew...

 

Gambaran seniman terhadap HD 188753 b, sebuah Jupiter panas Jupiter panas adalah sebuah kelas eksoplanet raksasa gas yang disimpulkan secara fisik mirip dengan Jupiter tetapi memiliki periode orbit yang sangat singkat (P < 10 hari). Jupiter panas adalah raksasa mirip Jupiter yang mengorbit bintang induknya 100 kali lebih dekat daripada Jupiter ke Matahari. Planet-planet ini mungkin terbentuk di bagian luar cakram primordial tempat lahirnya bintang pusat dan planet di sekitarnya, kemudian b...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!