Positive-definite kernel

In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics. They occur naturally in Fourier analysis, probability theory, operator theory, complex function-theory, moment problems, integral equations, boundary-value problems for partial differential equations, machine learning, embedding problem, information theory, and other areas.

Definition

Let be a nonempty set, sometimes referred to as the index set. A symmetric function is called a positive-definite (p.d.) kernel on if

(1.1)

holds for all , .

In probability theory, a distinction is sometimes made between positive-definite kernels, for which equality in (1.1) implies , and positive semi-definite (p.s.d.) kernels, which do not impose this condition. Note that this is equivalent to requiring that every finite matrix constructed by pairwise evaluation, , has either entirely positive (p.d.) or nonnegative (p.s.d.) eigenvalues.

In mathematical literature, kernels are usually complex-valued functions. That is, a complex-valued function is called a Hermitian kernel if and positive definite if for every finite set of points and any complex numbers ,

where denotes the complex conjugate.[1] In the rest of this article we assume real-valued functions, which is the common practice in applications of p.d. kernels.

Some general properties

  • For a family of p.d. kernels
    • The conical sum is p.d., given
    • The product is p.d., given
    • The limit is p.d. if the limit exists.
  • If is a sequence of sets, and a sequence of p.d. kernels, then both and are p.d. kernels on .
  • Let . Then the restriction of to is also a p.d. kernel.

Examples of p.d. kernels

  • Common examples of p.d. kernels defined on Euclidean space include:
    • Linear kernel: .
    • Polynomial kernel: .
    • Gaussian kernel (RBF kernel): .
    • Laplacian kernel: .
    • Abel kernel: .
    • Kernel generating Sobolev spaces : , where is the Bessel function of the third kind.
    • Kernel generating Paley–Wiener space: .
  • If is a Hilbert space, then its corresponding inner product is a p.d. kernel. Indeed, we have
  • Kernels defined on and histograms: Histograms are frequently encountered in applications of real-life problems. Most observations are usually available under the form of nonnegative vectors of counts, which, if normalized, yield histograms of frequencies. It has been shown [2] that the following family of squared metrics, respectively Jensen divergence, the -square, Total Variation, and two variations of the Hellinger distance:can be used to define p.d. kernels using the following formula

History

Positive-definite kernels, as defined in (1.1), appeared first in 1909 in a paper on integral equations by James Mercer.[3] Several other authors made use of this concept in the following two decades, but none of them explicitly used kernels , i.e. p.d. functions (indeed M. Mathias and S. Bochner seem not to have been aware of the study of p.d. kernels). Mercer’s work arose from Hilbert’s paper of 1904 [4] on Fredholm integral equations of the second kind:

(1.2)

In particular, Hilbert had shown that

(1.3)

where is a continuous real symmetric kernel, is continuous, is a complete system of orthonormal eigenfunctions, and ’s are the corresponding eigenvalues of (1.2). Hilbert defined a “definite” kernel as one for which the double integral satisfies except for . The original object of Mercer’s paper was to characterize the kernels which are definite in the sense of Hilbert, but Mercer soon found that the class of such functions was too restrictive to characterize in terms of determinants. He therefore defined a continuous real symmetric kernel to be of positive type (i.e. positive-definite) if for all real continuous functions on , and he proved that (1.1) is a necessary and sufficient condition for a kernel to be of positive type. Mercer then proved that for any continuous p.d. kernel the expansion holds absolutely and uniformly.

At about the same time W. H. Young,[5] motivated by a different question in the theory of integral equations, showed that for continuous kernels condition (1.1) is equivalent to for all .

E.H. Moore [6][7] initiated the study of a very general kind of p.d. kernel. If is an abstract set, he calls functions defined on “positive Hermitian matrices” if they satisfy (1.1) for all . Moore was interested in generalization of integral equations and showed that to each such there is a Hilbert space of functions such that, for each . This property is called the reproducing property of the kernel and turns out to have importance in the solution of boundary-value problems for elliptic partial differential equations.

Another line of development in which p.d. kernels played a large role was the theory of harmonics on homogeneous spaces as begun by E. Cartan in 1929, and continued by H. Weyl and S. Ito. The most comprehensive theory of p.d. kernels in homogeneous spaces is that of M. Krein[8] which includes as special cases the work on p.d. functions and irreducible unitary representations of locally compact groups.

In probability theory, p.d. kernels arise as covariance kernels of stochastic processes.[9]

Connection with reproducing kernel Hilbert spaces and feature maps

Positive-definite kernels provide a framework that encompasses some basic Hilbert space constructions. In the following we present a tight relationship between positive-definite kernels and two mathematical objects, namely reproducing Hilbert spaces and feature maps.

Let be a set, a Hilbert space of functions , and the corresponding inner product on . For any the evaluation functional is defined by . We first define a reproducing kernel Hilbert space (RKHS):

Definition: Space is called a reproducing kernel Hilbert space if the evaluation functionals are continuous.

Every RKHS has a special function associated to it, namely the reproducing kernel:

Definition: Reproducing kernel is a function such that

  1. , and
  2. , for all and .

The latter property is called the reproducing property.

The following result shows equivalence between RKHS and reproducing kernels:

Theorem —  Every reproducing kernel induces a unique RKHS, and every RKHS has a unique reproducing kernel.

Now the connection between positive definite kernels and RKHS is given by the following theorem

Theorem —  Every reproducing kernel is positive-definite, and every positive definite kernel defines a unique RKHS, of which it is the unique reproducing kernel.

Thus, given a positive-definite kernel , it is possible to build an associated RKHS with as a reproducing kernel.

As stated earlier, positive definite kernels can be constructed from inner products. This fact can be used to connect p.d. kernels with another interesting object that arises in machine learning applications, namely the feature map. Let be a Hilbert space, and the corresponding inner product. Any map is called a feature map. In this case we call the feature space. It is easy to see [10] that every feature map defines a unique p.d. kernel by Indeed, positive definiteness of follows from the p.d. property of the inner product. On the other hand, every p.d. kernel, and its corresponding RKHS, have many associated feature maps. For example: Let , and for all . Then , by the reproducing property. This suggests a new look at p.d. kernels as inner products in appropriate Hilbert spaces, or in other words p.d. kernels can be viewed as similarity maps which quantify effectively how similar two points and are through the value . Moreover, through the equivalence of p.d. kernels and its corresponding RKHS, every feature map can be used to construct a RKHS.

Kernels and distances

Kernel methods are often compared to distance based methods such as nearest neighbors. In this section we discuss parallels between their two respective ingredients, namely kernels and distances .

Here by a distance function between each pair of elements of some set , we mean a metric defined on that set, i.e. any nonnegative-valued function on which satisfies

  • , and if and only if ,

One link between distances and p.d. kernels is given by a particular kind of kernel, called a negative definite kernel, and defined as follows

Definition: A symmetric function is called a negative definite (n.d.) kernel on if

(1.4)

holds for any and such that .

The parallel between n.d. kernels and distances is in the following: whenever a n.d. kernel vanishes on the set , and is zero only on this set, then its square root is a distance for .[11] At the same time each distance does not correspond necessarily to a n.d. kernel. This is only true for Hilbertian distances, where distance is called Hilbertian if one can embed the metric space isometrically into some Hilbert space.

On the other hand, n.d. kernels can be identified with a subfamily of p.d. kernels known as infinitely divisible kernels. A nonnegative-valued kernel is said to be infinitely divisible if for every there exists a positive-definite kernel such that .

Another link is that a p.d. kernel induces a pseudometric, where the first constraint on the distance function is loosened to allow for . Given a positive-definite kernel , we can define a distance function as:

Some applications

Kernels in machine learning

Positive-definite kernels, through their equivalence with reproducing kernel Hilbert spaces (RKHS), are particularly important in the field of statistical learning theory because of the celebrated representer theorem which states that every minimizer function in an RKHS can be written as a linear combination of the kernel function evaluated at the training points. This is a practically useful result as it effectively simplifies the empirical risk minimization problem from an infinite dimensional to a finite dimensional optimization problem.

Kernels in probabilistic models

There are several different ways in which kernels arise in probability theory.

  • Nondeterministic recovery problems: Assume that we want to find the response of an unknown model function at a new point of a set , provided that we have a sample of input-response pairs given by observation or experiment. The response at is not a fixed function of but rather a realization of a real-valued random variable . The goal is to get information about the function which replaces in the deterministic setting. For two elements the random variables and will not be uncorrelated, because if is too close to the random experiments described by and will often show similar behaviour. This is described by a covariance kernel . Such a kernel exists and is positive-definite under weak additional assumptions. Now a good estimate for can be obtained by using kernel interpolation with the covariance kernel, ignoring the probabilistic background completely.

Assume now that a noise variable , with zero mean and variance , is added to , such that the noise is independent for different and independent of there, then the problem of finding a good estimate for is identical to the above one, but with a modified kernel given by .

  • Density estimation by kernels: The problem is to recover the density of a multivariate distribution over a domain , from a large sample including repetitions. Where sampling points lie dense, the true density function must take large values. A simple density estimate is possible by counting the number of samples in each cell of a grid, and plotting the resulting histogram, which yields a piecewise constant density estimate. A better estimate can be obtained by using a nonnegative translation invariant kernel , with total integral equal to one, and define as a smooth estimate.

Numerical solution of partial differential equations

One of the greatest application areas of so-called meshfree methods is in the numerical solution of PDEs. Some of the popular meshfree methods are closely related to positive-definite kernels (such as meshless local Petrov Galerkin (MLPG), Reproducing kernel particle method (RKPM) and smoothed-particle hydrodynamics (SPH)). These methods use radial basis kernel for collocation.[12]

Stinespring dilation theorem

Other applications

In the literature on computer experiments [13] and other engineering experiments, one increasingly encounters models based on p.d. kernels, RBFs or kriging. One such topic is response surface methodology. Other types of applications that boil down to data fitting are rapid prototyping and computer graphics. Here one often uses implicit surface models to approximate or interpolate point cloud data.

Applications of p.d. kernels in various other branches of mathematics are in multivariate integration, multivariate optimization, and in numerical analysis and scientific computing, where one studies fast, accurate and adaptive algorithms ideally implemented in high-performance computing environments.[14]

See also

References

  1. ^ Berezanskij, Jurij Makarovič (1968). Expansions in eigenfunctions of selfadjoint operators. Providence, RI: American Mathematical Soc. pp. 45–47. ISBN 978-0-8218-1567-0.
  2. ^ Hein, M. and Bousquet, O. (2005). "Hilbertian metrics and positive definite kernels on probability measures". In Ghahramani, Z. and Cowell, R., editors, Proceedings of AISTATS 2005.
  3. ^ Mercer, J. (1909). “Functions of positive and negative type and their connection with the theory of integral equations”. Philosophical Transactions of the Royal Society of London, Series A 209, pp. 415–446.
  4. ^ Hilbert, D. (1904). "Grundzuge einer allgemeinen Theorie der linearen Integralgleichungen I", Gott. Nachrichten, math.-phys. K1 (1904), pp. 49–91.
  5. ^ Young, W. H. (1909). "A note on a class of symmetric functions and on a theorem required in the theory of integral equations", Philos. Trans. Roy.Soc. London, Ser. A, 209, pp. 415–446.
  6. ^ Moore, E.H. (1916). "On properly positive Hermitian matrices", Bull. Amer. Math. Soc. 23, 59, pp. 66–67.
  7. ^ Moore, E.H. (1935). "General Analysis, Part I", Memoirs Amer. Philos. Soc. 1, Philadelphia.
  8. ^ Krein. M (1949/1950). "Hermitian-positive kernels on homogeneous spaces I and II" (in Russian), Ukrain. Mat. Z. 1(1949), pp. 64–98, and 2(1950), pp. 10–59. English translation: Amer. Math. Soc. Translations Ser. 2, 34 (1963), pp. 69–164.
  9. ^ Loève, M. (1960). "Probability theory", 2nd ed., Van Nostrand, Princeton, N.J.
  10. ^ Rosasco, L. and Poggio, T. (2015). "A Regularization Tour of Machine Learning – MIT 9.520 Lecture Notes" Manuscript.
  11. ^ Berg, C., Christensen, J. P. R., and Ressel, P. (1984). "Harmonic Analysis on Semigroups". Number 100 in Graduate Texts in Mathematics, Springer Verlag.
  12. ^ Schaback, R. and Wendland, H. (2006). "Kernel Techniques: From Machine Learning to Meshless Methods", Cambridge University Press, Acta Numerica (2006), pp. 1–97.
  13. ^ Haaland, B. and Qian, P. Z. G. (2010). "Accurate emulators for large-scale computer experiments", Ann. Stat.
  14. ^ Gumerov, N. A. and Duraiswami, R. (2007). "Fast radial basis function interpolation via preconditioned Krylov iteration". SIAM J. Scient. Computing 29/5, pp. 1876–1899.

Read other articles:

KegemukanSiluet dan lingkar pinggang yang memperlihatkan berat badan normal, kelebihan berat, dan kegemukanInformasi umumSpesialisasiEndokrinologi  Kegemukan atau obesitas adalah suatu kondisi medis berupa kelebihan lemak tubuh yang terakumulasi sedemikian rupa sehingga menimbulkan dampak merugikan bagi kesehatan, yang kemudian menurunkan harapan hidup dan/atau meningkatkan masalah kesehatan.[1][2] Seseorang dianggap menderita kegemukan (obese) jika indeks massa tubuh (IM...

 

Shepton Mallet Localidad Shepton MalletLocalización de Shepton Mallet en SomersetCoordenadas 51°11′35″N 2°32′46″O / 51.193, -2.546Entidad Localidad • País  Reino Unido • Nación constitutiva Inglaterra • Condado SomersetCódigo postal BA4Prefijo telefónico 01749 Sitio web oficial [editar datos en Wikidata] Shepton Mallet es una localidad situada en el condado de Somerset, en Inglaterra (Reino Unido), con una población en 2016 d...

 

Touch My Body Single de Mariah Careyextrait de l'album E=mc2 Sortie 28 mars 2008 31 mars 2008 1er avril 2008 2 avril 2008 8 avril 2008 26 mai 2008 Enregistré 2007 Durée 3:27 Genre Pop, RnB Format SingleTéléchargementMaxi SinglePromo Single Auteur Mariah CareyChristopher Tricky StewartThe-DreamCrystale Producteur Mariah CareyChristopher Tricky StewartThe-Dream Label Island Records Critique About.com AllMusic Digital Spy Rolling Stone Singles de Mariah Carey Lil' L.O.V.E.(2007) By...

Universitas Raja Saud bin Abdul Aziz untuk Ilmu Kesehatanجامعة الملك سعود بن عبدالعزيز للعلوم الصحيةJenisPublikDidirikan25/04/2005PresidenDr. Bandar Al-Knawy[1]Wakil Presiden Prof. Youssef Al-Eissa Dr. Abdulmajeed Al-Abdulkareem Prof. Majid Al-Tuwaijri Dr. Mohammad Al-Jumah Jumlah mahasiswa3085Sarjana2584Magister501LokasiRiyadh, Jeddah, dan Al-Ahsa, Arab SaudiNama julukanKSAU-HSAfiliasiGarda Nasional Urusan Kesehatan (NGHA)Situs webhttp://www.ksau-...

 

Venezuelan footballer (born 1984) In this Spanish name, the first or paternal surname is Vizcarrondo and the second or maternal family name is Araujo. Oswaldo Vizcarrondo Personal informationFull name Oswaldo Augusto Vizcarrondo AraujoDate of birth (1984-05-31) 31 May 1984 (age 39)Place of birth Caracas, VenezuelaHeight 1.92 m (6 ft 4 in)Position(s) DTTeam informationCurrent team Nantes (Women)Youth career1998–2001 CaracasSenior career*Years Team Apps (Gls)2002...

 

Parroquia de Caddo Parroquia Ubicación de la parroquia en LuisianaUbicación de Luisiana en EE.UU.Coordenadas 32°35′N 93°53′O / 32.58, -93.88Capital ShreveportCiudad más poblada ShreveportEntidad Parroquia • País  Estados Unidos • Estado  Luisiana • Sede ShreveportSuperficie   • Total 2427 km²  • Tierra 882 mi² 2284 km² • Agua (5.86%) 55 mi² 142 km²Población (2000)   • Total 252 ...

جزء من سلسلة مقالات حولالنحو والتصريف في العربية الإعراب الكلمة الاسم الفعل الحرف العبارات الجملة الاسمية جملة اسمية مختصرة الفعلية الجملة الفعلية الواقعة مضافا إليه شبه الجملة النوع المُعرب المبني الوقوف المجرد المزيد أقسام الإعراب إعراب ظاهر (لفظي) إعراب تقديري إعراب م

 

Este artículo trata sobre el canal español. Para el canal peruano, véase Latina Televisión. Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 1 de marzo de 2013. Telelatina Nombre público TelelatinaEslogan Un canal con identidad latinaProgramación GeneralPropietario Asociación Latina de Radio y TelevisiónPaís España EspañaInicio de transmisiones 10 de diciembre de 2009Personas clave Lester Burton (Director Pres...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Adien GunartaLahir15 Januari 1995 (umur 28)Probolinggo, Jawa TimurPekerjaanPerancang huruf Adien saat sedang berbicara dalam kegiatan WikiNusantara 2019. Adien Gunarta (lahir 15 Januari 1995) adalah seorang perancang huruf asal Indonesia. Fon has...

Wubei Zhi Hanzi tradisional: 武備志 Hanzi sederhana: 武备志 Makna harfiah: catatan persiapan militer Alih aksara Mandarin - Hanyu Pinyin: Wǔbèi Zhì Ilustrasi sebuah burus silang dalam Wubei Zhi Ilustrasi sebuah formasi pasukan Sun Zi dalam Wubei Zhi Wubei Zhi (Hanzi: 武備志; Pinyin: Wǔbèi Zhì; Risalah Teknologi Persenjataan atau Catatan Persenjataan dan Tujuan-tujuan Militer), juga umum dikenal dengan nama terjemahan Jepang-nya Bubishi,[1][2][3] ...

 

Tari TopengPertunjukan drama tari Topeng Bali Bagian dari seri Drama tari di Asia Tenggara Topografi Asia Tenggara Myanmar Yama Zatdaw Kamboja Khmer_shadow_theatre Lakhon Khol Lakhon Mohory Lakhon Pol Srey Royal Ballet of Cambodia Yike Indonesia Bangsawan Barong Gambuh Kecak Ketoprak Kuda Lumping Legong Lenong Ludruk Mak yong Sendratari Ramayana Randai Reog Ronggeng Sandiwara Toneel Topeng Wayang wong Laos Classical dance and theatre Malaysia Bangsawan Boria Dikir Barat Jikey Kuda Lumping Mak...

 

Electronic musical instrument Telefunken Volkstrautonium, 1933 (Telefunken Trautonium Ela T 42 (1933–35)) a production version of the Trautonium co-developed by Telefunken, Friedrich Trautwein and Oskar Sala from 1931 onwards. The Trautonium is an electronic synthesizer invented[1] in 1930[2] by Friedrich Trautwein in Berlin at the Musikhochschule's music and radio lab, the Rundfunkversuchstelle.[3] Soon afterwards Oskar Sala joined him, continuing development until ...

1879 New York City law The airshaft of a dumbbell tenement, ca. 1900 Old Law Tenements are tenements built in New York City after the Tenement House Act of 1879 and before the New York State Tenement House Act (New Law) of 1901. The 1879 law required that every habitable room have a window opening to plain air, a requirement that was met by including air shafts between adjacent buildings. Old Law Tenements are commonly called dumbbell tenements after the shape of the building footprint: the a...

 

Paralimpiade Musim Panas 1988Tuan rumahSeoulKorea SelatanMotoBersatu untuk Tantangan(Korea: 도전을 위한 화합)Jumlah disiplin732 dari 16 cabang olahragaTempat utamaStadion Olimpiade Seoul← New York/Stoke Mandeville 1984 Barcelona 1992 → Paralimpiade Musim Panas 1988 (Hangul: 1988년 패럴림픽; RR: 1988nyeon hagye paeleollimpik), adalah Paralimpiade pertama dalam 24 tahun yang diadakan di tempat yang sama kota sebagai Olimpiade. Mereka mengambil tempa...

 

Neighbourhood in Kollam, Kerala, IndiaCutchery Taluk CutcheryNeighbourhoodTaluk Cutchery JunctionCutcheryLocation in Kollam, IndiaShow map of KollamCutcheryCutchery (Kerala)Show map of KeralaCutcheryCutchery (India)Show map of IndiaCoordinates: 8°53′24″N 76°35′04″E / 8.889989°N 76.584362°E / 8.889989; 76.584362Country IndiaStateKeralaCityKollamGovernment • BodyKollam Municipal Corporation(KMC)Languages • OfficialMalayalam, Engli...

Siswoyo Hari SantosoKomandan Lantamal VII/KupangMasa jabatan25 Juli 2015 – 10 Oktober 2016PendahuluDeni KurniadiPenggantiDedi Suhendar Informasi pribadiLahir(1962-08-15)15 Agustus 1962Malang, Jawa TimurMeninggal23 Juli 2023(2023-07-23) (umur 60)Tangerang Selatan, BantenKebangsaanIndonesiaSuami/istriNy. Nurul Amalia LestariAlma materAkademi Angkatan Laut (1986)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan LautMasa dinas1986—2020Pangkat Brigadir Jenderal TNI...

 

Soccer clubVitesse DallasFull nameVitesse DallasFounded2007GroundArlington Indoor Center (2008–Present)Capacity500Manager Roy RamosLeaguePremier Arena Soccer League Home colors Away colors Vitesse Dallas is an indoor soccer team in the USA, founded in 2007. The team is a member of the Premier Arena Soccer League. Vitesse has won two PASL-Premier Championships (2008/09 and 2011/12). The team plays its home games at Arlington Indoor Center in the city of Grand Prairie, Texas, 14 miles south-w...

 

Pembantaian Bình AnLokasiHamlet Gò Dài, desa Binh An (sekarang xã Tây Vinh) di distrik Tây Sơn, provinsi Bình Định, Vietnam SelatanTanggal26 Februari 1966SasaranPara penduduk desa Binh AnJenis seranganPembantaianKorban tewas380[1][2]PelakuDivisi Ibukota ROK lbsPembantaian saat Perang Vietnam Huế Châu Đốc Tây Vinh Bình An Binh Tai Tinh Son Bình Hòa Phong Nhị dan Phong Nhất Hà My Đắk Sơn My Lai Pasukan Harimau Operation Speedy Express Penyelidikan P...

Independence HypothesisThe independence theory posits that each evangelist has independently drawn from eyewitness accounts and perhaps oral tradition.Theory InformationOrderNo relationshipAdditional SourcesNo additional sourcesTheory HistoryProponentsEta Linnemann Proposed solution to the synoptic problem This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by intr...

 

Species of mammal Dorcas gazelle In Marwell Zoo, UK Conservation status Vulnerable (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Bovidae Subfamily: Antilopinae Tribe: Antilopini Genus: Gazella Species: G. dorcas Binomial name Gazella dorcas(Linnaeus, 1758) Gazella dorcas range Synonyms Capra dorcas Linnaeus, 1758 The dorcas gazelle (Gazella dorcas), also known as the ariel gazelle...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!