Poincaré and the Three-Body Problem

Poincaré and the Three-Body Problem is a monograph in the history of mathematics on the work of Henri Poincaré on the three-body problem in celestial mechanics. It was written by June Barrow-Green, as a revision of her 1993 doctoral dissertation, and published in 1997 by the American Mathematical Society and London Mathematical Society as Volume 11 in their shared History of Mathematics series (ISBN 0-8218-0367-0).[1] The Basic Library List Committee of the Mathematical Association of America has suggested its inclusion in undergraduate mathematics libraries.[2]

Topics

The three-body problem concerns the motion of three bodies interacting under Newton's law of universal gravitation, and the existence of orbits for those three bodies that remain stable over long periods of time. This problem has been of great interest mathematically since Newton's formulation of the laws of gravity, in particular with respect to the joint motion of the sun, earth, and moon. The centerpiece of Poincaré and the Three-Body Problem is a memoir on this problem by Henri Poincaré, entitled Sur le problème des trois corps et les équations de la dynamique [On the problem of the three bodies and the equations of dynamics]. This memo won the King Oscar Prize in 1889, commemorating the 60th birthday of Oscar II of Sweden, and was scheduled to be published in Acta Mathematica on the king's birthday, until Lars Edvard Phragmén and Poincaré determined that there were serious errors in the paper. Poincaré called for the paper to be withdrawn, spending more than the prize money to do so. In 1890 it was finally published in revised form, and over the next ten years Poincaré expanded it into a monograph, Les méthodes nouvelles de la mécanique céleste [New methods in celestial mechanics]. Poincare's work led to the discovery of chaos theory,[3] set up a long-running separation between mathematicians and dynamical astronomers over the convergence of series,[4][5] and became the initial claim to fame for Poincaré himself.[6][4] The detailed story behind these events, long forgotten, was brought back to life in a sequence of publications by multiple authors in the early and mid 1990s, including Barrow-Green's dissertation, a journal publication based on the dissertation, and this book.[5]

The first chapter of Poincaré and the Three-Body Problem introduces the problem and its second chapter surveys early work on this problem, in which some particular solutions were found by Newton, Jacob Bernoulli, Daniel Bernoulli, Leonhard Euler, Joseph-Louis Lagrange, Pierre-Simon Laplace, Alexis Clairaut, Charles-Eugène Delaunay, Hugo Glydén, Anders Lindstedt, George William Hill, and others.[1][5] The third chapter surveys the early work of Poincaré, which includes work on differential equations, series expansions, and some special solutions of the three-body problem, and the fourth chapter surveys this history of the founding of Acta Arithmetica by Gösta Mittag-Leffler and of the prize competition announced by Mittag-Leffler in 1885,[1][3] which Barrow-Green suggests may have been deliberately set with Poincaré's interests in mind[7] and which Poincaré's memoir would win. The fifth chapter concerns Poincaré's memoir itself;[1][3] it includes a detailed comparison of the significant differences between the withdrawn and published versions,[4][8][7] and overviews the new mathematical content it contained, including not only the possibility of chaotic orbits but also homoclinic orbits[1] and the use of integrals to construct invariants of systems.[5] After a chapter on Poincaré's expanded monograph and his other later work on the three-body problem, the remainder of the book discusses the influence of Poincaré's work on later mathematicians. This includes contributions on the singularities of solutions by Paul Painlevé, Edvard Hugo von Zeipel, Tullio Levi-Civita, Jean Chazy, Richard McGehee, Donald G. Saari, and Zhihong Xia, on the stability of solutions by Aleksandr Lyapunov, on numerical results by George Darwin, Forest Ray Moulton, and Bengt Strömgren, on power series by Giulio Bisconcini and Karl F. Sundman, and on the KAM theory by Andrey Kolmogorov, Vladimir Arnold, and Jürgen Moser,[5] and additional contributions by George David Birkhoff, Jacques Hadamard, V. K. Melnikov, and Marston Morse.[1][3][8] However, much of modern chaos theory is left out of the story "as amply dealt with elsewhere",[8] and the work of Qiudong Wang generalizing Sundman's convergent series from three bodies to arbitrary numbers of bodies is also omitted.[5] An epilogue considers the impact of modern computer power on the numerical study of Poincaré's theories.[6]

Audience and reception

This book is aimed at specialists in the history of mathematics,[1] but can be read by any student of mathematics familiar with differential equations,[6] although the central part of the book, analyzing Poincaré's work, may be too light on mathematical detail to be readily understandable without reference to other material.[7]

Reviewer Ll. G. Chambers writes "This is a superb piece of work and it throws new light on one of the most fundamental topics of mechanics."[1] Reviewer Jean Mawhin calls it "the definitive work about the chaotic story of the King Oscar Prize" and "pleasantly accessible";[3] reviewer R. Duda calls it "clearly organized, well written, richly documented",[8] and both Mawhin and Duda call it a "valuable addition" to the literature.[3][8] And reviewer Albert C. Lewis writes that it "provides insights into higher mathematics that justify its being on every university mathematics student's reading list".[6] Although reviewer Florin Diacu (himself a noted researcher on the n-body problem) complains that Wang was omitted, that Barrow-Green "sometimes fails to see connections ... within Poincaré's own work" and that some of her translations are inaccurate, he also recommends the book.[5]

References

  1. ^ a b c d e f g h Chambers, Ll. G. (1997), "Review of Poincaré and the Three-Body Problem", Mathematical Reviews, MR 1415387
  2. ^ "Poincaré and the Three Body Problem", MAA Reviews, Mathematical Association of America (as of February 2020, this site contains no review, only the book metadata and the Basic Library List recommendation).
  3. ^ a b c d e f Mawhin, Jean (Jun 1998), "Review of Poincaré and the Three-Body Problem", Isis, 89 (2): 345–346, JSTOR 237789
  4. ^ a b c Gottlieb, Daniel Henry (Dec 1999), "Review of Poincaré and the Three-Body Problem" (PDF), The American Mathematical Monthly, 106 (10): 977–980, doi:10.2307/2589771, JSTOR 2589771
  5. ^ a b c d e f g Diacu, Florin (May 1999), "Review of Poincaré and the Three-Body Problem", Historia Mathematica, 26 (2): 175–178, doi:10.1006/hmat.1999.2236
  6. ^ a b c d Lewis, Albert C. (Jul 1999), "Review of Poincaré and the Three-Body Problem", The Mathematical Gazette, 83 (497): 343, doi:10.2307/3619091, JSTOR 3619091
  7. ^ a b c Vickers, James (January 1999), "Review of Poincaré and the Three-Body Problem", Bulletin of the London Mathematical Society, 31 (1): 121–123, doi:10.1112/s0024609397313952
  8. ^ a b c d e Duda, R., "Review of Poincaré and the Three-Body Problem", zbMATH, Zbl 0877.01022

Read other articles:

Lake in Bærum, Norway DælivannetDælivannetShow map of AkershusDælivannetShow map of NorwayLocationBærum, Akershus, NorwayCoordinates59°55′17″N 10°32′25″E / 59.92139°N 10.54028°E / 59.92139; 10.54028Basin countriesNorwaySurface area11 ha (27 acres)Surface elevation99 m (325 ft) Dælivannet is a lake in Bærum, Akershus county, Norway. It lies just beneath the Kolsås hill on the East side. The lake contains perch and pike and has a r...

 

Komedi Moderen Gokil!Sutradara Cuk FK Produser Dhamoo Punjabi Ditulis oleh Eric Satyo Dhamoo Punjabi PemeranBoris BokirDodit MulyantoIndro WarkopKartika PutriNadine AlexandraMaya WulanPenata musikCandilPenyuntingAgoes ComprosPerusahaanproduksiMD PicturesTanggal rilisDurasi95 menitNegara IndonesiaBahasa Indonesia SekuelKomedi Gokil 2 Komedi Moderen Gokil! merupakan film komedi Indonesia yang dirilis pada 17 September 2015. Film ini dibintangi oleh Boris Bokir, Dodit Mulyanto, Kartik...

 

1993 film by Abel Ferrara This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (November 2015) Dangerous GameTheatrical release posterDirected byAbel FerraraWritten byNicholas St. JohnProduced byMary KaneStarring Harvey Keitel Madonna James Russo CinematographyKen KelschEdited byAnthony RedmanMusic byJoe DeliaProductioncompanies Cecchi Gori Europa Eye P...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) تيم هاردين (بالإنجليزية: Tim Hardin)‏    معلومات شخصية الميلاد 23 ديسمبر 1941[1][2]  يوجين، أوريغون  الوفاة 29 ديسمبر 1980 (39 سنة) [1][2]  لوس أنج...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2017) صوفيا زهوك Sofya Zhuk معلومات شخصية الميلاد 1 ديسمبر 1999 (العمر 24 سنة)موسكو الطول 176 سنتيمتر  الإقامة موسكو  الجنسية  روسيا الحياة العملية مجموع الجوائز ال...

 

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Leisten (Begriffsklärung) aufgeführt. Alamannische Schuhleisten aus dem Gräberfeld von Oberflacht (7. Jahrhundert) Leisten verschiedener Größen und Formen Schuhmacherwerkstatt in Hamburg, im Hintergrund das Regal mit Leisten Der Leisten ist ein Formstück aus Holz, Kunststoff oder Metall, das der Form eines Fußes nachempfunden ist und zum Bau eines Schuhs verwendet wird. Das Wort, das ursprünglich Spur und Fußabd...

Rhododendron lapponicum Klasifikasi ilmiah Kerajaan: Plantae Divisi: Tracheophyta Kelas: Magnoliopsida Ordo: Ericales Famili: Ericaceae Genus: Rhododendron Spesies: Rhododendron lapponicum Nama binomial Rhododendron lapponicum(L.) Wahlenb. Rhododendron lapponicum adalah spesies tumbuhan yang tergolong ke dalam famili Ericaceae. Spesies ini juga merupakan bagian dari ordo Ericales. Spesies Rhododendron lapponicum sendiri merupakan bagian dari genus Rhododendron. Referensi The Plant List: A wor...

 

Book by Richard Cyert A Behavioral Theory of the Firm Cover of the second editionAuthorRichard Cyert and James MarchPublication date1963ISBN0-631-17451-6 The behavioral theory of the firm first appeared in the 1963 book A Behavioral Theory of the Firm by Richard M. Cyert and James G. March.[1] The work on the behavioral theory started in 1952 when March, a political scientist, joined Carnegie Mellon University, where Cyert was an economist.[2] Before this model was formed, the...

 

Marco Reus Marco Reus (2023) Personalia Geburtstag 31. Mai 1989 (34 Jahre) Geburtsort Dortmund, Deutschland Größe 180 cm[1] Position Offensives Mittelfeld, Flügel Junioren Jahre Station 1993–1995 PTSV Dortmund 1926 1995–2005 Borussia Dortmund 2005–2008 LR Ahlen/Rot Weiss Ahlen Herren Jahre Station Spiele (Tore)1 2006–2008 Rot Weiss Ahlen II 6 00(3) 2007–2009 Rot Weiss Ahlen 43 00(5) 2009–2012 Borussia Mönchengladbach 97 0(36) 2012– Borussia Dortmund 274 (11...

Luni-solar calendar used by the Punjabi people of the Indian subcontinent Part of a series onPunjabis History Folklore Language Dialects Punjab Punjabis Nationalism DiasporaAsia Afghanistan Europe United Kingdom North America United States Canada Oceania Australia New Zealand Culture Clothing Cuisine Dance Festivals (India • Pakistan) Literature Media Music Religion (Folk religion) Sport Television Regions Majha Malwa Doaba Puadh Bagar Pothwar Derajat Bhatiore Bhattiana Chhachh Kachhi Doabs...

 

King in late medieval India Ahom dynasty List of Ahom kings 1 Sukaphaa 1228–1268 2 Suteuphaa 1268–1281 3 Subinphaa 1281–1293 4 Sukhaangphaa 1293–1332 5 Sukhrangpha 1332–1364 Interregnum 1364–1369 6 Sutuphaa 1369–1376 Interregnum 1376–1380 7 Tyao Khamti 1380–1389 Interregnum 1389–1397 8 Sudangphaa 1397–1407 9 Sujangphaa 1407–1422 10 Suphakphaa 1422–1439 11 Susenphaa 1439–1488 12 Suhenphaa 1488–1493 13 Sup...

 

Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. Vụ đánh bom Đền Shiite tại Kazimiya 2009Địa điểmKazimiya, IraqThời điểm4 tháng 1, 2009 (Giờ phối hợp quốc tế+3)Mục tiêuĐền ShiiteLoại hìnhNổ bom cảm...

Texas Instrumentsангл. Texas Instruments Знак перед предприятием Texas Instruments в Даллас (Техас) Тип Публичная компания Листинг на бирже NASDAQ: TXN Основание 1930 Основатели Сесил Говард Грин[d] Расположение США: Даллас, Техас Ключевые фигуры Ричард Темплтон (президент и CEO)Кевин Марч (CFO)Брайан Бо...

 

PawSutradara Astrid Henning-Jensen Produser Mogens Skot-Hansen Ditulis oleh Torry Gredsted Astrid Henning-Jensen Bjarne Henning-Jensen PemeranJimmy StermanSinematograferHenning BendtsenPenyuntingAnker SørensenTanggal rilis18 Desember 1959Durasi93 menitNegara Denmark Bahasa Denmark IMDbInformasi di IMDb Paw adalah Film Denmark tahun 1959 yang disutradarai oleh Astrid Henning-Jensen. Film ini pernah menjadi salah satu nominai dalam Academy Award untuk Film Berbahasa Asing Terbaik. Film ini dit...

 

State electricity regulation board operating within the state of Maharashtra Maharashtra State Electricity Boardमहाराष्ट्र राज्य विद्युत मंडळTypeState Government Electricity BoardIndustryElectricity Generation, Electricity Transmission, Electricity DistributionFounded20 June 1960HeadquartersMumbai, Maharashtra, IndiaArea servedMaharashtraProductsElectricityParentMinistry of Energy, New and Renewable Energy , Government Of MaharashtraDivision...

Prince Nikolai Sergeevich Gagarin (1784-1842). Prince (Knyaz) Nikolai Sergeevich Gagarin (князь Николай Сергеевич Гагарин; July 12, 1784—July 25, 1842) was a Russian leader. Life Born in London to the Rurikid Gagarin family, Prince Gagarin was appointed to the Highest command of the 1st infantry during a drawing up of the Moscow military force (July 1812). He took part in the Battle of Borodino, the largest and bloodiest single-day battle of the Napoleonic Wa...

 

British actor Jack HaigJack Haig as Monsieur Roger LeClerc in 'Allo 'Allo!BornJohn Cecil Coppin(1913-01-05)5 January 1913Streatham, London, EnglandDied4 July 1989(1989-07-04) (aged 76)Hampstead, London, EnglandYears active1959–1989Spouse Sybil Dunn ​ ​(m. 1938; died 1988)​Children1 Jack Haig (born John Cecil Coppin; 5 January 1913 – 4 July 1989) was an English actor who specialised in supporting roles, mainly in television comedy. ...

 

Former law school of Whittier College Whittier Law SchoolWhittier Law School's Building 1 (of 4), housing Academic and Bar Support, the Dean's Office, and Student/Alumni RelationsParent schoolWhittier CollegeEstablished1966School typePrivateDeanJudith Daar (interim) Rudolph C. Hasl (interim)LocationCosta Mesa, California, United StatesUSNWR ranking(defunct)Bar pass rate11% (July 2019 first-time takers)[1]Websitelaw.whittier.eduABA profileLSAC link: Whittier Law School Whittier Law Sch...

Questa voce sull'argomento calciatori paraguaiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Ángel Orué Nazionalità  Paraguay Altezza 185 cm Peso 83 kg Calcio Ruolo Attaccante Squadra  Atlántida Carriera Giovanili 2007-2009 Libertad Squadre di club1 2009-2011 Libertad40 (14)2011→  Santiago Wanderers10 (3)2012-2013→  Nacional38 (7)2013 Libertad8 (0)2014→ ...

 

American voice actor Bob JolesJoles at the D23 Expo in 2011BornRobert W. Joles (1959-07-16) July 16, 1959 (age 64)Los Angeles County, California, U.S.[1]Other namesRob JolesOccupationVoice actorYears active1981–present Robert W. Joles[1] (born July 16, 1959)[1] is an Scottish-American voice actor. He is known for voicing many characters in many television shows, most notably the voice of Man Ray in SpongeBob SquarePants (replacing John Rhys-Davies), an...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!