Plane wave expansion method

Plane wave expansion method (PWE) refers to a computational technique in electromagnetics to solve the Maxwell's equations by formulating an eigenvalue problem out of the equation. This method is popular among the photonic crystal community as a method of solving for the band structure (dispersion relation) of specific photonic crystal geometries. PWE is traceable to the analytical formulations, and is useful in calculating modal solutions of Maxwell's equations over an inhomogeneous or periodic geometry.[1] It is specifically tuned to solve problems in a time-harmonic forms, with non-dispersive media (a reformulation of the method named Inverse dispersion allows frequency-dependent refractive indices[2]).

Principles

[dubiousdiscuss]

Plane waves are solutions to the homogeneous Helmholtz equation, and form a basis to represent fields in the periodic media. PWE as applied to photonic crystals as described is primarily sourced from Dr. Danner's tutorial.[3]

The electric or magnetic fields are expanded for each field component in terms of the Fourier series components along the reciprocal lattice vector. Similarly, the dielectric permittivity (which is periodic along reciprocal lattice vector for photonic crystals) is also expanded through Fourier series components.

with the Fourier series coefficients being the K numbers subscripted by m, n respectively, and the reciprocal lattice vector given by . In real modeling, the range of components considered will be reduced to just instead of the ideal, infinite wave.

Using these expansions in any of the curl-curl relations like, and simplifying under assumptions of a source free, linear, and non-dispersive region we obtain the eigenvalue relations which can be solved.

Example for 1D case

Band structure of a 1D Photonic Crystal, DBR air-core calculated using plane wave expansion technique with 101 planewaves, for d/a=0.8, and dielectric contrast of 12.250.

For a y-polarized z-propagating electric wave, incident on a 1D-DBR periodic in only z-direction and homogeneous along x,y, with a lattice period of a. We then have the following simplified relations:

The constitutive eigenvalue equation we finally have to solve becomes,

This can be solved by building a matrix for the terms in the left hand side, and finding its eigenvalue and vectors. The eigenvalues correspond to the modal solutions, while the corresponding magnetic or electric fields themselves can be plotted using the Fourier expansions. The coefficients of the field harmonics are obtained from the specific eigenvectors.

The resulting band-structure obtained through the eigenmodes of this structure are shown to the right.

Example code

We can use the following code in MATLAB or GNU Octave to compute the same band structure,

%
% solve the DBR photonic band structure for a simple
% 1D DBR. air-spacing d, periodicity a, i.e, a > d,
% we assume an infinite stack of 1D alternating eps_r|air layers
% y-polarized, z-directed plane wave incident on the stack
% periodic in the z-direction;
%

% parameters
d = 8; % air gap
a = 10; % total periodicity
d_over_a = d / a;
eps_r = 12.2500; % dielectric constant, like GaAs,

% max F.S coefs for representing E field, and Eps(r), are
Mmax = 50;

% Q matrix is non-symmetric in this case, Qij != Qji
% Qmn = (2*pi*n + Kz)^2*Km-n
% Kn = delta_n / eps_r + (1 - 1/eps_r) (d/a) sinc(pi.n.d/a)
% here n runs from -Mmax to + Mmax,

freqs = [];
for Kz = - pi / a:pi / (10 * a): + pi / a
    Q = zeros(2 * Mmax + 1);
    for x = 1:2 * Mmax + 1
        for y = 1:2 * Mmax + 1
            X = x - Mmax;
            Y = y - Mmax;
            kn = (1 - 1 / eps_r) * d_over_a .* sinc((X - Y) .* d_over_a) + ((X - Y) == 0) * 1 / eps_r;
            Q(x, y) = (2 * pi * (Y - 1) / a + Kz) .^ 2 * kn; % -Mmax<=(Y-1)<=Mmax
        end
    end
 
    fprintf('Kz = %g\n', Kz)
    omega_c = eig(Q);
    omega_c = sort(sqrt(omega_c)); % important step
    freqs = [freqs; omega_c.'];
end

close
figure
hold on
idx = 1;

for idx = 1:length(- pi / a:pi / (10 * a): + pi / a)
    plot(- pi / a:pi / (10 * a): + pi / a, freqs(:, idx), '.-')
end

hold off
xlabel('Kz')
ylabel('omega/c')
title(sprintf('PBG of 1D DBR with d/a=%g, Epsr=%g', d / a, eps_r))

Advantages

PWE expansions are rigorous solutions. PWE is extremely well suited to the modal solution problem. Large size problems can be solved using iterative techniques like Conjugate gradient method. For both generalized and normal eigenvalue problems, just a few band-index plots in the band-structure diagrams are required, usually lying on the brillouin zone edges. This corresponds to eigenmodes solutions using iterative techniques, as opposed to diagonalization of the entire matrix.

The PWEM is highly efficient for calculating modes in periodic dielectric structures. Being a Fourier space method, it suffers from the Gibbs phenomenon and slow convergence in some configuration when fast Fourier factorization is not used. It is the method of choice for calculating the band structure of photonic crystals. It is not easy to understand at first, but it is easy to implement.

Disadvantages

[dubiousdiscuss]

Sometimes spurious modes appear. Large problems scaled as O(n3), with the number of the plane waves (n) used in the problem. This is both time consuming and complex in memory requirements.

Alternatives include Order-N spectral method, and methods using Finite-difference time-domain (FDTD) which are simpler, and model transients.

If implemented correctly, spurious solutions are avoided. It is less efficient when index contrast is high or when metals are incorporated. It cannot be used for scattering analysis.

Being a Fourier-space method, Gibbs phenomenon affects the method's accuracy. This is particularly problematic for devices with high dielectric contrast.

See also

References

  1. ^ Andrianov, Igor V.; Danishevskyy, Vladyslav V.; Topol, Heiko; Rogerson, Graham A. (25 November 2016). "Propagation of Floquet–Bloch shear waves in viscoelastic composites: analysis and comparison of interface/interphase models for imperfect bonding". Acta Mechanica. 228: 1177-1196. doi:10.1007/s00707-016-1765-4.
  2. ^ Rybin, Mikhail; Limonov, Mikhail (2016). "Inverse dispersion method for calculation of complex photonic band diagram and PT symmetry". Physical Review B. 93 (16): 165132. arXiv:1707.02870. doi:10.1103/PhysRevB.93.165132.
  3. ^ Danner, Aaron J. (2011-01-31). "An introduction to the plane wave expansion method for calculating photonic crystal band diagrams". Aaron Danner - NUS. Archived from the original on 2022-06-15. Retrieved 2022-09-29.

Read other articles:

كرة الطائرة كرة طائرة بطولة آسيا لكرة الطائرة للرجال بطولة آسيا لكرة الطائرة للسيدات أعلام كرة طائرة أندية كرة طائرة إعلام كرة طائرة الدوري العالمي لكرة الطائرة بطولة أمريكا الجنوبية لكرة الطائرة للرجال بطولة أمريكا الجنوبية لكرة الطائرة للسيدات بذرة كرة طائرة بوابة كرة...

 

ناغاوكا    علم شعار الاسم الرسمي (باليابانية: 長岡市)‏(باليابانية: 長岡町)‏    الإحداثيات 37°26′46″N 138°51′04″E / 37.446194444444°N 138.85125°E / 37.446194444444; 138.85125  [1] تاريخ التأسيس 1 أبريل 1906،  و1 أبريل 1889  تقسيم إداري  البلد اليابان[2][3]  التقسيم الأ

 

أثينايوم أوهايو   معلومات التأسيس 1829  الموقع الجغرافي إحداثيات 39°04′58″N 84°22′19″W / 39.0828°N 84.3719°W / 39.0828; -84.3719  المدينة نوروود  الرمز البريدي 45230-2091[1]  البلد الولايات المتحدة  إحصاءات عدد الطلاب 160 (سبتمبر 2020)[1]  عدد الموظفين 60 (سبتمبر 2020)[1&...

Not to be confused with Saint-Léon-le-Grand, Mauricie, Quebec. You can help expand this article with text translated from the corresponding article in French. (January 2012) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than sim...

 

دار سليم   معلومات شخصية الميلاد 18 أغسطس 1977 (العمر 46 سنة)بغداد، العراق الجنسية الدنمارك الأولاد 1 عدد الأولاد 1   الحياة العملية المدرسة الأم أستوديو ويليام إسبر  [لغات أخرى]‏[1]  المهنة ممثل مسرحي،  وممثل أفلام،  وطيار،  وممثل[1]،  ومعلم فنون قت

 

Waffen-SS Commander (1910–1995) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2009) (Learn how and when to remove this template message) Sylvester StadlerBorn(1910-12-30)30 December 1910Fohnsdorf, Austria-HungaryDied23 August 1995(1995-08-23) (aged 84)Augsburg, GermanyAllegianceNazi GermanyService/branchWaffen-SSYears of service1935–4...

Catedral de San Marcos Monumento Histórico(Decreto Supremo n.º 602, del 4 de octubre de 1984) LocalizaciónPaís Chile ChileDivisión Región de Arica y ParinacotaSubdivisión Provincia de AricaLocalidad AricaDirección Bolognesi 170Coordenadas 18°28′44″S 70°19′15″O / -18.478951, -70.320725Información religiosaCulto Iglesia católicaDiócesis San Marcos de AricaEstatus CatedralAdvocación San MarcosHistoria del edificioConstrucción 1875-1876Arquitecto Gustav...

 

This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects: Writing systems Writing portalThis template falls within the scope of WikiProject Writing systems, a WikiProject interested in improving the encyclopaedic coverage and content of articles relating to writing systems on Wikipedia. If you would like to help out, you are welcome to drop by the project page and/or leave a query at the project’s talk page.Writing syste...

 

العلاقات السويدية القبرصية السويد قبرص   السويد   قبرص تعديل مصدري - تعديل   العلاقات السويدية القبرصية هي العلاقات الثنائية التي تجمع بين السويد وقبرص.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة السويد قبرص

陀飛輪陳奕迅的歌曲收录于专辑《Time Flies》语言粵語发行日期2010年 (2010)类型粵語流行时长4:38唱片公司新藝寶唱片作曲Vincent Chow作词黃偉文编曲Gary Tong制作人Alvin Leong音乐视频YouTube上的《陀飛輪》陳奕迅版官方MV 《陀飛輪》是香港男歌手陳奕迅一首2010年推出的粵語歌曲,由Vincent Chow作曲,黃偉文填詞。歌名以高級機械腕錶的重要部件「陀飛輪」代指屬於奢侈品的名牌腕...

 

2006 Indian Telugu-language film by Lakshmi Narayana Pendem Andala RamuduDVD coverDirected byLakshmi Narayana PendemWritten byRamesh-Gopi (dialogues)Story byLivingstonProduced byNV PrasadParas JainStarringSunilAarthi AggarwalCinematographySameer ReddyEdited byNandamuri HariMusic byS. A. RajkumarDistributed bySuper Good FilmsRelease date 11 August 2006 (2006-08-11) CountryIndiaLanguageTeluguBudget₹4 crore[1]Box officeest. ₹12 crore[1] Andala Ramudu is a 2006 ...

 

Hospital in British Columbia, CanadaKelowna General HospitalInterior HealthCentennial Building entrance to Kelowna General HospitalLocation in British ColumbiaGeographyLocation2268 Pandosy StreetKelowna, British Columbia, CanadaV1Y 1T2Coordinates49°52′23″N 119°29′39″W / 49.87306°N 119.49417°W / 49.87306; -119.49417OrganisationCare systemInterior HealthTypeGeneral, teachingAffiliated universityUBC Faculty of Medicine and UBC Okanagan School of NursingService...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: University of the Philippines Rural High School – news · newspapers · books · scholar · JSTOR (January 2022) (Learn how and when to remove this template message) Up administered school in Brgy. Paciano Rizal, Bay, Laguna, PhilippinesUniversity of the Philippine...

 

American military occupation ranking SteelworkerRating insigniaIssued byUnited States NavyTypeEnlisted ratingAbbreviationSWSpecialtyConstruction A United States Navy Steelworker welding a seam Steelworker (abbreviated as SW) is a United States Navy occupational rating. Steelworkers perform tasks directly related to fabrication and erection of pre-engineered structures, including steel reinforcement; control job site deployment of materials and equipment; direct and coordinate the composition,...

 

宮崎県済生会日向病院 画像をアップロード情報正式名称 社会福祉法人恩賜財団済生会支部宮崎県済生会日向病院英語名称 Miyazakiken Saiseikai Hyuga Hospital前身 済生会延岡診療所済生会延岡病院標榜診療科 内科、糖尿病内科、脳神経内科、小児科、外科、整形外科、泌尿器科、眼科、耳鼻咽喉科、形成外科、放射線科、麻酔科、リハビリテーション科許可病床数 199床一般病...

Possible references to Jesus in the Talmud For the related article discussing the Hebrew name Yeshu, as found in Talmud and other Jewish literature, see Yeshu. For the Hebrew or Aramaic name, see Yeshua. Head of Christ by Rembrandt Part of a series on Jesus in Christianity Christ Christology Names and titles Life of Jesus Gospels Gospel harmony Places Virgin birth Nativity Baptism Ministry Sermon on the Mount Miracles Parables Humiliation Execution Burial Resurrection Ascension Obedience Heav...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (سبتمبر 2023) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة...

 

مقاطعة هارتفورد   الإحداثيات 41°49′N 72°44′W / 41.81°N 72.73°W / 41.81; -72.73  [1] تاريخ التأسيس 1666  سبب التسمية هارتفوردشير  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى كونيتيكت (4 يوليو 1776–)  العاصمة هارتفورد  خصائص جغرافية  الم...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. David Cameron (kelahiran 1966) adalah Perdana Menteri Britania Raya (2010–2016). David Cameron juga dapat mengacu pada: Olahraga Sepakbola David Cameron (pemain sepak bola Australia) (lahir 1964), pemain sepakbola Australia David Cameron (pemain sep...

 

一場於德國斯圖加特舉行的模擬聯合國會議 模擬聯合國(英語:Model United Nations,缩写MUN)是一種學術性質活動,藉由精簡後的聯合國議規舉行模擬會議,使與會者瞭解多邊外交的過程,培養分析公民議題的能力,促進世界各地學生的交流,增進演講和辯論能力,提高组织、策划、管理、研究和写作、解决冲突、求同存异的能力[1],訓練批判性思考、團隊精神和領導才...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!