In its organometallic compounds, ruthenium is known to adopt oxidation states from -2 ([Ru(CO)4]2−) to +6 ([RuN(Me)4]−). Most common are those in the 2+ oxidation state, as illustrated below.
NHC ligands have become very common in organoruthenium complexes.[8][9] NHC ligands can be prepared with precise steric and electronic parameters, and can be chiral for use in asymmetric catalysis.[10] NHCs, as strongly donating L-type ligands, are often used to replace phosphine ligands. A notable example is 2nd generation Grubbs catalyst, in which a phosphine of the 1st generation catalyst is replaced by an NHC.
Multinuclear organo-ruthenium complexes have been investigated for anti-cancer properties. The compounds studied include di-, tri-, and tetra-nuclear complexes and tetrara-, hexa-, and octa- metalla-cages.[2]
Carbonylation of ruthenium trichloride gives a series of Ru(II) chlorocarbonyls. These are the precursors to Ru3(CO)12.
Organoosmium compounds
In the same group 8 elementsosmium resembles ruthenium in its complexes.[15] Because Os is more expensive than Ru, the chemistry is less developed and has fewer applications. Of course the cost of the catalyst is offset if turnover numbers are high.[16] Thus, osmium tetroxide is an important oxidizing agent in organic chemistry especially in the conversion of alkenes to 1,2-diols.[17]
The 5d-orbitals in Os are higher in energy that the 4d-orbitals in Ru. Thus, π backbonding to alkenes and CO is stronger for Os compounds, which leads to more stable organic derivatives. This effect is illustrated by the stability of the alkene derivatives of the type [Os(NH3)5(alkene)]2+ or [Os(NH3)5(arene)]2+[18] as in the example below.
Important compounds, at least for academic studies, are the carbonyls such as triosmium dodecacarbonyl and decacarbonyldihydridotriosmium. The phosphine complexes are analogous to those or ruthenium, but hydride derivatives, e.g. OsHCl(CO)(PPh3)3, tend to be more stable.[19]
References
^Synthesis of Organometallic Compounds: A Practical Guide Sanshiro Komiya Ed. S. Komiya, M. Hurano 1997
^ abBabak, Maria V.; Wee, Han Ang (2018). "Chapter 6. Multinuclear Organometallic Ruthenium-Arene Complexes for Cancer Therapy". In Sigel, Astrid; Sigel, Helmut; Freisinger, Eva; Sigel, Roland K. O. (eds.). Metallo-Drugs:Development and Action of Anticancer Agents. Metal Ions in Life Sciences. Vol. 18. Berlin: de Gruyter GmbH. pp. 171–198. doi:10.1515/9783110470734-012. PMID29394025.
^Barthazy, P.; Stoop, R. M.; Wörle, M.; Togni, A.; Mezzetti, A. (2000). "Toward Metal-Mediated C-F Bond Formation. Synthesis and Reactivity of the 16-Electron Fluoro Complex [RuF(dppp)2]PF6 (dppp = 1,3-Bis(diphenylphosphino)propane)". Organometallics. 19: 2844–2852. doi:10.1021/om0000156.
^Conley, B.; Pennington-Boggio, M.; Boz, E.; Williams, T. (2010). "Discovery, Applications, and Catalytic Mechanisms of Shvo's Catalyst". Chemical Reviews. 110 (4): 2294–2312. doi:10.1021/cr9003133. PMID20095576.