The orbital angular momentum of light (OAM) is the component of angular momentum of a light beam that is dependent on the field spatial distribution, and not on the polarization. OAM can be split into two types. The internal OAM is an origin-independent angular momentum of a light beam that can be associated with a helical or twisted wavefront. The external OAM is the origin-dependent angular momentum that can be obtained as cross product of the light beam position (center of the beam) and its total linear momentum.
Concept
A beam of light carries a linear momentum, and hence it can be also attributed an external angular momentum . This external angular momentum depends on the choice of the origin of the coordinate system. If one chooses the origin at the beam axis and the beam is cylindrically symmetric (at least in its momentum distribution), the external angular momentum will vanish. The external angular momentum is a form of OAM, because it is unrelated to polarization and depends on the spatial distribution of the optical field (E).
A more interesting example of OAM is the internal OAM appearing when a paraxial light beam is in a so-called "helical mode". Helical modes of the electromagnetic field are characterized by a wavefront that is shaped as a helix, with an optical vortex in the center, at the beam axis (see figure). If the phase varies around the axis of such a wave, it carries orbital angular momentum.[1]
In the figure to the right, the first column shows the beam wavefront shape. The second column is the optical phase distribution in a beam cross-section, shown in false colors. The third column is the light intensity distribution in a beam cross-section (with a dark vortex core at the center).
The helical modes are characterized by an integer number , positive or negative. If , the mode is not helical and the wavefronts are multiple disconnected surfaces, for example, a sequence of parallel planes (from which the name "plane wave"). If , the handedness determined by the sign of , the wavefront is shaped as a single helical surface, with a step length equal to the wavelength. If , the wavefront is composed of distinct but intertwined helices, with the step length of each helix surface equal to , and a handedness given by the sign of . The integer is also the so-called "topological charge" of the optical vortex. Light beams that are in a helical mode carry nonzero OAM. As an example, any Laguerre-Gaussian mode with rotational mode number has such a helical wavefront.[2]
Formulation
The classical expression of the orbital angular momentum is the following:[3]
where and are the electric field and the vector potential, respectively, is the vacuum permittivity and we are using SI units. The -superscripted symbols denote the cartesian components of the corresponding vectors.
For a monochromatic wave this expression can be transformed into the following one:[4][5]
This expression is generally nonvanishing when the wave is not cylindrically symmetric. In particular, in a quantum theory, individual photons may have the following values of the OAM:[5]
where the topological charge can be extracted numerically from electric field profile of vortex beams. [6]
The corresponding wave functions (eigenfunctions of OAM operator) have the following general expression:
where is the cylindrical coordinate. As mentioned in the Introduction, this expression corresponds to waves having a helical wavefront (see figure above), with an optical vortex in the center, at the beam axis.
Spiral wave plates, made of plastic or glass, are plates where the thickness of the material increases in a spiral pattern in order to imprint a phase gradient on light passing through it. For a given wavelength, an OAM state of a given requires that the step height —the height between the thinnest and thickest parts of the plate— be given by where is the refractive index of the plate. Although the wave plates themselves are efficient, they are relatively expensive to produce, and are, in general, not adjustable to different wavelengths of light.[7]
Another way to modify the phase of the light is with a diffraction grating. For an state, the diffraction grating would consist of parallel lines. However, for an state, there will be a "fork" dislocation, and the number of lines above the dislocation will be one larger than below. An OAM state with can be created by increasing the difference in the number of lines above and below the dislocation.[8] As with the spiral wave plates, these diffraction gratings are fixed for , but are not restricted to a particular wavelength.
A spatial light modulator operates in a similar way to diffraction gratings, but can be controlled by computer to dynamically generate a wide range of OAM states.
Theoretical work suggests that a series of optically distinct chromophores are capable of supporting an excitonic state whose symmetry is such that in the course of the exciton relaxing, a radiation mode of non-zero topological charge is created directly.[9]
Most recently,[when?] the geometric phase concept has been adopted for OAM generation. The geometric phase is modulated to coincide with the spatial phase dependence factor, i.e., of an OAM carrying wave. In this way, geometric phase is introduced by using anisotropic scatterers. For example, a metamaterial composed of distributed linear polarizers in a rotational symmetric manner generates an OAM of order 1.[10] To generate higher-order OAM wave, nano-antennas which can produce the spin-orbit coupling effect are designed and then arranged to form a metasurface with different topological charges.[11] Consequently, the transmitted wave carries an OAM, and its order is twice the value of the topological charge. Usually, the conversion efficiency is not high for the transmission-type metasurface. Alternative solution to achieve high transmittance is to use complementary (Babinet-inverted) metasurface.[12] On the other hand, it is much easier to achieve high conversion efficiency, even 100% efficiency in the reflection-type metasurface such as the composite PEC-PMC metasurface.[13]
Beside OAM generation in free space, integrated photonic approaches can also realize on-chip optical vortices carrying OAM. Representative approaches include patterned ring resonators,[14] subwavelength holographic gratings,[15] Non-Hermitian vortex lasers,[16][17] and meta-waveguide OAM emitters.[18][19]
Measurement
Determining the spin angular momentum (SAM) of light is simple – SAM is related to the polarization state of the light: the AM is, per photon, in a left and right circularly polarized beam respectively. Thus the SAM can be measured by transforming the circular polarization of light into a p- or s-polarized state by means of a wave plate and then using a polarizing beam splitter that will transmit or reflect the state of light.[7]
The development of a simple and reliable method for the measurement of orbital angular momentum (OAM) of light, however, remains an important problem in the field of light manipulation. OAM (per photon) arises from the amplitude cross-section of the beam and is therefore independent of the spin angular momentum: whereas SAM has only two orthogonal states, the OAM is described by a state that can take any integer value N.[20] As the state of OAM of light is unbounded, any integer value of l is orthogonal to (independent from) all the others. Where a beam splitter could separate the two states of SAM, no device can separate the N (if greater than 2) modes of OAM, and, clearly, the perfect detection of all N potential states is required to finally resolve the issue of measuring OAM. Nevertheless, some methods have been investigated for the measurement of OAM.
Counting spiral fringes
Beams carrying OAM have a helical phase structure. Interfering such a beam with a uniform plane wave reveals phase information about the input beam through analysis of the observed spiral fringes. In a Mach–Zender interferometer, a helically phased source beam is made to interfere with a plane-wave reference beam along a collinear path. Interference fringes will be observed in the plane of the beam waist and/or at the Rayleigh range. The path being collinear, these fringes are pure consequence of the relative phase structure of the source beam. Each fringe in the pattern corresponds to one step through: counting the fringes suffices to determine the value of l.
Diffractive holographic filters
Computer-generated holograms can be used to generate beams containing phase singularities, and these have now become a standard tool for the generation of beams carrying OAM. This generating method can be reversed: the hologram, coupled to a single-mode fiber of set entrance aperture, becomes a filter for OAM. This approach is widely used for the detection of OAM at the single-photon level.
The phase of these optical elements results to be the superposition of several fork-holograms carrying topological charges selected in the set of values to be demultiplexed. The position of the channels in far-field can be controlled by multiplying each fork-hologram contribution to the corresponding spatial frequency carrier.[21]
Other methods
Other methods to measure the OAM of light include the rotational Doppler effect, systems based on a Dove prism interferometer,[22] the measure of the spin of trapped particles, the study of diffraction effects from apertures, and optical transformations.[23][24] The latter use diffractive optical elements in order to unwrap the angular phase patterns of OAM modes into plane-wave phase patterns which can subsequently be resolved in the Fourier space. The resolution of such schemes can be improved by spiral transformations that extend the phase range of the output strip-shaped modes by the number of spirals in the input beamwidth.[25]
Research into OAM has suggested that light waves could carry hitherto unprecedented quantities of data through optical fibres. According to preliminary tests, data streams travelling along a beam of light split into 8 different circular polarities have demonstrated the capacity to transfer up to 2.5 terabits of data (equivalent to 66 DVDs or 320 gigabytes) per second.[26] Further research into OAM multiplexing in the radio and mm wavelength frequencies has been shown in preliminary tests to be able to transmit 32 gigabits of data per second over the air. The fundamental communication limit of orbital-angular-momentum multiplexing is increasingly urgent for current multiple-input multiple-output (MIMO) research. The limit has been clarified in terms of independent scattering channels or the degrees of freedom (DoF) of scattered fields through angular-spectral analysis, in conjunction with a rigorous Green function method.[27]
The DoF limit is universal for arbitrary spatial-mode multiplexing, which is launched by a planar electromagnetic device, such as antenna, metasurface, etc., with a predefined physical aperture.
Using qudits (with d levels, as opposed to a qubit's 2 levels) has been shown to improve the robustness of quantum key distribution schemes. OAM states provide a suitable physical realisation of such a system, and a proof-of-principle experiment (with 7 OAM modes from to ) has been demonstrated.[33]
Radio astronomy
In 2019, a letter published in the Monthly Notices of the Royal Astronomical Society presented evidence that OAM radio signals had been received from the vicinity of the M87* black hole, over 50 million light years distant, suggesting that optical angular momentum information can propagate over astronomical distances.[34]
^ abSha, Wei E. I.; Lan, Zhihao; Chen, Menglin L. N.; Chen, Yongpin P.; Sun, Sheng (2024), "Spin and Orbital Angular Momenta of Electromagnetic Waves: From Classical to Quantum Forms", IEEE Journal on Multiscale and Multiphysics Computational Techniques, 9: 113–117, arXiv:2403.01504, Bibcode:2024IJMMC...9..113S, doi:10.1109/JMMCT.2024.3370729
^Kang, Ming; Chen, Jing; Wang, Xi-Lin; Wang, Hui-Tian (2012-03-06). "Twisted Vector Field from an Inhomogeneous and Anisotropic Metamaterial". Journal of the Optical Society of America B. 29 (4): 572–576. Bibcode:2012JOSAB..29..572K. doi:10.1364/JOSAB.29.000572.
^Bouchard, Frederic; Leon, Israel De; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W. (2014-09-11). "Optical Spin-to-Orbital Angular Momentum Conversion in Ultra-Thin Metasurfaces with Arbitrary Topological Charges". Appl. Phys. Lett. 105 (10): 101905. arXiv:1407.5491. Bibcode:2014ApPhL.105j1905B. doi:10.1063/1.4895620. S2CID39733399.
^Chen, Menglin L. N.; Jiang, Li Jun; Sha, Wei E. I. (2016-02-11). "Artificial Perfect Electric Conductor-Perfect Magnetic Conductor Anisotropic Metasurface for Generating Orbital Angular Momentum of Microwave with Nearly Perfect Conversion Efficiency". J. Appl. Phys. 119 (6): 064506. arXiv:1602.04557. Bibcode:2016JAP...119f4506C. doi:10.1063/1.4941696. S2CID119208338.
^Padgett, [ed.:] L. Allen, Stephen M. Barnett, Miles J. (2003). Optical angular momentum. Bristol [u.a.]: Institute of Physics Publ. ISBN978-0-7503-0901-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
^Mirhosseini, Mohammad; Magaña-Loaiza, Omar S.; O'Sullivan, Malcolm N.; Rodenburg, Brandon; Malik, Mehul; Lavery, Martin P. J.; Padgett, Miles J.; Gauthier, Daniel J.; Boyd, Robert W. (20 March 2015). "High-dimensional quantum cryptography with twisted light". New Journal of Physics. 17 (3): 033033. arXiv:1402.7113. Bibcode:2015NJPh...17c3033M. doi:10.1088/1367-2630/17/3/033033. S2CID5300819.
Allen, L.; Barnett, Stephen M. & Padgett, Miles J. (2003). Optical Angular Momentum. Bristol: Institute of Physics. ISBN978-0-7503-0901-1..
Torres, Juan P. & Torner, Lluis (2011). Twisted Photons: Applications of Light with Orbital Angular Momentum. Bristol: Wiley-VCH. ISBN978-3-527-40907-5..
Puerta del Sol Intipunku Patrimonio de la Humanidad de la Unesco Vista posterior de la Puerta del SolLocalizaciónPaís Bolivia BoliviaCoordenadas 16°33′16″S 68°40′27″O / -16.5544, -68.6741Datos generalesRegión La Paz, BoliviaLugar de celebración Tiahuanaco, Bolivia[editar datos en Wikidata] La Puerta del Sol es un monolito tallado en forma de arco o puerta de entrada en el sitio de Tiahuanaco por la cultura Tiahuanaco, una civilización andina de Bo...
El Puente de Hierro de Logroño. El puente de Hierro de Logroño es el más antiguo de los cuatro puentes que atraviesan el río Ebro a su paso por la capital riojana. Fue inaugurado en 1882 y tiene una longitud de 330 metros. Características Consta de 11 tramos de 30 metros cada uno, diseñados a una altura con respecto al nivel más bajo del río de unos ocho metros, altura suficiente para salvar las grandes crecidas del Ebro en determinadas épocas del año, como las ocurridas en los año...
Die Liste der Kulturdenkmale in der Inneren Altstadt enthält die Kulturdenkmale des Stadtteils Innere Altstadt in der Dresdner Gemarkung Altstadt I. Diese Gemarkung gliedert sich in die Stadtteile Innere Altstadt, Pirnaische Vorstadt, Seevorstadt und Innere Wilsdruffer Vorstadt. Die Anmerkungen sind zu beachten. Diese Liste ist eine Teilliste der Liste der Kulturdenkmale in Dresden. Diese Liste ist eine Teilliste der Liste der Kulturdenkmale in Sachsen. Inhaltsverzeichnis 1 Legende 2 Innere ...
لونجافي (بالإسبانية: Longaví) هي مدينة وبلدية في تشيلي تقع في محافظة ليناريس ، في إقليم مولي .[1] لونجافي علم شعار الإحداثيات 35°58′00″S 71°41′00″W / 35.966666666667°S 71.683333333333°W / -35.966666666667; -71.683333333333 [2] تاريخ التأسيس 1937 تقسيم إداري البلد تشيلي&...
Provincial political party in Canada Communist Party of British Columbia Active provincial partyLeaderKimball CariouFounded1924 (1924)Headquarters706 Clark DriveVancouver, British ColumbiaV5L 3J1IdeologyCommunismMarxism–LeninismNational affiliationCommunist Party of CanadaSeats in the Legislative Assembly0 / 87Websitewww.cpcbc.caPolitics of British ColumbiaPolitical partiesElections The Communist Party of British Columbia is the provincial section of the Communist Party of Ca...
2016 album by The Brave EpochStudio album by The BraveReleased5 August 2016Recorded2016StudioSTL Studios, Sydney, NSWGenreMetalcore, hardcoreLength33:39LabelUNFDRiseProducerSonny TrueloveThe Brave chronology Epoch(2016) Aura(2019) Singles from Epoch SearchlightReleased: 28 March 2016 EscapeReleased: 12 May 2016 Break FreeReleased: 9 June 2016 Epoch is the debut studio album by Australian metalcore band The Brave, released on 5 August 2016 by UNFD. It was produced, engineered, and mixed by...
Este artículo o sección sobre deportistas necesita ser wikificado, por favor, edítalo para que cumpla con las convenciones de estilo.Este aviso fue puesto el 8 de enero de 2013. Adrián Fernández Adrián Fernández en el Autódromo Hermanos Rodríguez.Datos personalesNombre Adrián Fernández Mier[1]Nacionalidad MexicanoNacimiento 20 de abril de 1963 (60 años)Ciudad de México, MéxicoCarrera deportivaPalmarés generalÚltima carrera la chinita de cats[editar datos en Wi...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Saint Joseph Hospital Denver, Colorado – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) 39°44′43″N 104°58′07″W / 39.7454°N 104.9687°W / 39.7454; -104.9687 Hosp...
Railway station in Miyoshi, Hiroshima Prefecture, Japan Nishi-Miyoshi Station西三次駅Nishi-Miyoshi Station, January 2008, before demolitionGeneral informationLocation4-chōme-9 Tōkaichinishi, Miyoshi-shi, Hiroshima-ken 728-0011JapanCoordinates34°47′54.42″N 132°50′27.03″E / 34.7984500°N 132.8408417°E / 34.7984500; 132.8408417Owned by West Japan Railway CompanyOperated by West Japan Railway CompanyLine(s)P Geibi LineDistance91.9 km (57.1 mi) fr...
Public radio station in New York City WNYC-FMNew York, New YorkUnited StatesFrequency93.9 MHz (HD Radio)BrandingWNYC 93.9 FMProgrammingLanguage(s)EnglishFormatNews/Talk (Public)SubchannelsHD2: WQXR-FM simulcast (Classical)HD3: WNYC simulcast (Public)AffiliationsNPROwnershipOwnerNew York Public RadioSister stationsWNYC, WQXR-FM, WQXW, New Jersey Public RadioHistoryFirst air dateMarch 13, 1943 (80 years ago) (1943-03-13)Call sign meaningNew York CityTechnical information[1]...
For the television series known before watershed as Secret Diary, see Secret Diary of a Call Girl. 2002 studio album by Girl TalkSecret DiaryStudio album by Girl TalkReleased2002GenreMashup, glitch, noise, avant-gardeLength39:45LabelIllegal ArtProducerGregg GillisGirl Talk chronology Secret Diary(2002) Unstoppable(2004) Professional ratingsReview scoresSourceRatingAllMusic[1] Secret Diary is the debut studio album by American musician Girl Talk, released in 2002 on Illegal Art...
Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Outubro de 2020) Resolução 233do Conselho de Segurança da ONU Data: 6 de junho de 1967 Reunião: 1.348 Código: S/RES/233 (Documento) Votos: Prós Contras Abstenções Ausentes 15 0 0 Assunto: A situação no Médio Oriente Resultado: Aprovada Composiç...
RAF Holmsley SouthUSAAF Station AAF-455 New Milton, Hampshire in EnglandPhoto-Mosaic of Holmesley South airfield - December 1946 after all flying had ended with X on each runway end.RAF Holmsley SouthShown within HampshireCoordinates50°47′18″N 001°41′58″W / 50.78833°N 1.69944°W / 50.78833; -1.69944TypeRoyal Air Force stationCodeHMSite informationOwnerAir MinistryOperatorRoyal Air Force1942-44 & 1944-United States Army Air Forces 1944Controlled ...
Princes Mall, bottom left, in 2006 Waverley Market (formerly also known as Waverley Shopping Centre, Princes Mall, and Waverley Mall) is a shopping centre in Edinburgh, Scotland. The old Waverley Market Waverley market roof (left) The old Waverley Market occupied the same site as the current shopping centre. The location is in the city centre, on a plot bordered by Waverley Bridge, Princes Street , the Balmoral Hotel and Edinburgh Waverley railway station. Before construction of the railways ...
American film, television and theatre actor Tony MartinezMartinez (left) with Walter Brennan and Richard Crenna in The Real McCoys, 1962Born(1920-01-27)January 27, 1920San Juan, Puerto RicoDiedSeptember 16, 2002(2002-09-16) (aged 82)Las Vegas, Nevada, U.S.Occupation(s)Film, television and theatre actorSpouseMyra Martinez[1]Children5[1] Tony Martinez (January 27, 1920 – September 16, 2002) was an American film, television and theatre actor. He was perhaps best known for ...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: AkzoNobel – berita · surat kabar · buku · cendekiawan · JSTOR (Februari 2021) Akzo Nobel N.V.Kantor pusat AkzoNobel di AmsterdamJenisNaamloze VennootschapKode emitenTemplat:EuronextAmsterdamKomponen AEXIndust...
Major bridges in Sudan This table presents a non-exhaustive list of the road and railway bridges in Sudan with spans greater than 100 metres (328 ft) or total lengths longer than 500 metres (1,640 ft). Name Arabic Span Length Type CarriesCrosses Opened Location Governorate Ref. 1 Tuti North Bridgeproject 300 m (980 ft) 600 m (2,000 ft) Cable-stayedConcrete deck and pylons150+300+150 Road bridgeBlue Nile Khartoum North–Tuti Island15°37′05.1″N 32°30′...