Null graph

In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph").

Order-zero graph

Order-zero graph (null graph)
Vertices0
Edges0
Girth
Automorphisms1
Chromatic number0
Chromatic index0
Genus0
PropertiesIntegral
Symmetric
Treewidth -1
NotationK0
Table of graphs and parameters

The order-zero graph, K0, is the unique graph having no vertices (hence its order is zero). It follows that K0 also has no edges. Thus the null graph is a regular graph of degree zero. Some authors exclude K0 from consideration as a graph (either by definition, or more simply as a matter of convenience). Whether including K0 as a valid graph is useful depends on context. On the positive side, K0 follows naturally from the usual set-theoretic definitions of a graph (it is the ordered pair (V, E) for which the vertex and edge sets, V and E, are both empty), in proofs it serves as a natural base case for mathematical induction, and similarly, in recursively defined data structures K0 is useful for defining the base case for recursion (by treating the null tree as the child of missing edges in any non-null binary tree, every non-null binary tree has exactly two children). On the negative side, including K0 as a graph requires that many well-defined formulas for graph properties include exceptions for it (for example, either "counting all strongly connected components of a graph" becomes "counting all non-null strongly connected components of a graph", or the definition of connected graphs has to be modified not to include K0). To avoid the need for such exceptions, it is often assumed in literature that the term graph implies "graph with at least one vertex" unless context suggests otherwise.[1][2]

In category theory, the order-zero graph is, according to some definitions of "category of graphs," the initial object in the category.

K0 does fulfill (vacuously) most of the same basic graph properties as does K1 (the graph with one vertex and no edges). As some examples, K0 is of size zero, it is equal to its complement graph K0, a forest, and a planar graph. It may be considered undirected, directed, or even both; when considered as directed, it is a directed acyclic graph. And it is both a complete graph and an edgeless graph. However, definitions for each of these graph properties will vary depending on whether context allows for K0.

Edgeless graph

Edgeless graph (empty graph, null graph)
Verticesn
Edges0
Radius0
Diameter0
Girth
Automorphismsn!
Chromatic number1
Chromatic index0
Genus0
PropertiesIntegral
Symmetric
NotationKn
Table of graphs and parameters

For each natural number n, the edgeless graph (or empty graph) Kn of order n is the graph with n vertices and zero edges. An edgeless graph is occasionally referred to as a null graph in contexts where the order-zero graph is not permitted.[1][2]

It is a 0-regular graph. The notation Kn arises from the fact that the n-vertex edgeless graph is the complement of the complete graph Kn.

See also

Notes

  1. ^ a b Weisstein, Eric W. "Empty Graph". MathWorld.
  2. ^ a b Weisstein, Eric W. "Null Graph". MathWorld.

References

  • Harary, F. and Read, R. (1973), "Is the null graph a pointless concept?", Graphs and Combinatorics (Conference, George Washington University), Springer-Verlag, New York, NY.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: P...

 

Euskirchen Bahnhof Euskirchen mit ZOB (Frühjahr 2006) Daten Lage im Netz Trennungsbahnhof Bahnsteiggleise 6 Abkürzung KEU IBNR 8000100 Preisklasse 3 Eröffnung 1864 bahnhof.de Euskirchen Lage Stadt/Gemeinde Euskirchen Land Nordrhein-Westfalen Staat Deutschland Koordinaten 50° 39′ 28″ N, 6° 47′ 28″ O50.6577786.791111Koordinaten: 50° 39′ 28″ N, 6° 47′ 28″ O Höhe (SO) 166 m Eisenbahnstrecken Hürth-Kalscheuren

 

L. Fisson & Cie Rechtsform Gründung 1896 Auflösung 1899 Sitz Paris, Frankreich Leitung Louis Fisson Branche Automobilindustrie Fisson von 1898 auf der Techno-Classica Fisson à moteur Benz (1897) L. Fisson & Cie war ein französischer Hersteller von Automobilen.[1][2][3] Inhaltsverzeichnis 1 Unternehmensgeschichte 2 Fahrzeuge 3 Literatur 4 Weblinks 5 Einzelnachweise Unternehmensgeschichte Louis Fisson gründete das Unternehmen 1896 in der Rue Maublanc 14 in P...

Обґрунтування добропорядного використання для статті «Вибори столиці Олімпійських ігор 2010» [?] Опис Вибори столиці Олімпійських ігор 2010. Логотип кандидата Джерело Report of the 2010 IOC Evaluation Commission Мета використання в якості основного засобу візуальної ідентифікації у в...

 

Perang Balkan IBagian dari Perang BalkanSearah jarum jam dari kanan atas: Pasukan Serbia memasuki kota Mitrovica; Pasukan Ottoman di Pertempuran Kumanovo; raja Yunani dan tsar Bulgaria di Thessaloniki; Artileri berat BulgariaTanggal8 Oktober 1912 – 30 Mei 1913(7 bulan, 3 minggu dan 1 hari)LokasiSemenanjung BalkanHasil Kemenangan Liga Balkan Perjanjian LondonPihak terlibat Liga Balkan Bulgaria Serbia Yunani MontenegroDidukung oleh: Rusia  Kesultanan Ut...

 

Diana M. HollandBorn1968 (age 54–55)AllegianceUnited StatesService/branchUnited States ArmyYears of service1990–2023RankMajor GeneralCommands heldUnited States Army Corps of Engineers Mississippi Valley DivisionUnited States Army Corps of Engineers South Atlantic Division130th Engineer Brigade92nd Engineer BattalionBattles/warsIraq WarWar in AfghanistanOperation Resolute SupportAwardsDistinguished Service Medal (2)Legion of Merit (2)Bronze Star Medal (3) Diana Maureen Hollan...

Sebuah bentuk (biru) serta dilatasi (hijau) dan erosinya (kuning) dengan elemen penyusun berbentuk belah ketupat. Morfologi matematis (MM) adalah teori dan teknik analisis dan pengolahan struktur geometri yang berdasarkan teori himpunan, teori kekisi, topologi, dan fungsi acak. MM sering dipakai dalam gambar digital, tetapi juga bisa dipakai dalam graf, jala poligon, padatan, dan struktur spasial lainnya. Konsep ruang malar topologis dan geometris, seperti ukuran, bentuk, kecembungan, keterhu...

 

Part of a series onShia Islam Beliefs and practices Monotheism Holy Books Prophethood Succession to Muhammad Imamate Angels Judgment Day Mourning of Muharram Intercession Clergy The Four Companions Arbaʽeen Pilgrimage Days of remembrance Ashura Arba'een Mawlid Eid al-Fitr Eid al-Adha Eid al-Ghadir Eid al-Mubahala Mourning of Muharram Omar Koshan History Verse of purification Two things Mubahala Khumm Fatimah's house First Fitna Second Fitna Battle of Karbala Origin Persecution Branches and s...

 

S2S2 di Stasiun Taunusanlage menuju NiedernhausenIkhtisarJenisAngkutan cepat, kereta api komuterSistemS-Bahn Rhein-MainStatusBeroperasiLokasiFrankfurt Rhine-MainTerminusNiedernhausenDietzenbachStasiun27LayananMain-Lahn Railway, Citytunnel Frankfurt, Rodgau Railway, Offenbach-Bieber–Dietzenbach railwayNomor lintas2OperasiDibuka28 Mei 1978 (1978-05-28)PemilikRhein-Main-VerkehrsverbundOperatorDB RegioDepoFrankfurt HbfRangkaianDBAG Class 423Data teknisPanjang lintas547 km (340 mi...

Song and single by Yoko Ono She Gets Down on Her KneesSong by Yoko Onofrom the album A Story ReleasedJuly 1997Recorded1974Length4:50LabelRykodiscSongwriter(s)Yoko OnoProducer(s)Yoko Ono, David Spinozza She Gets Down on Her KneesSong by Yoko Onofrom the album Season of Glass Released8 June 1981Recorded1981StudioThe Hit Factory, New York CityLength4:13LabelGeffenSongwriter(s)Yoko OnoProducer(s)Yoko Ono, Phil Spector She Gets Down on Her KneesSingle by Yoko OnoReleased7 February 2012Genre Rock d...

 

تتنافس العديد من البلدان الآسيوية من خلال مجموعة من وكالات الفضاء وذلك بهدف تحقيق التقدم العلمي والتكنولوجي في الفضاء الخارجي. يُشار إلى هذا التنافس أحيانا باسم سباق الفضاء الآسيوي خاصة في وسائل الإعلام الشعبية؛[1] كما كان يُستعمل كمرجع في وقت سابق لوصف سباق الفضاء بي...

 

Rachel MatthewsMatthews diwawancarai oleh Dulce Osuna pada 2019LahirRachel Lynn Matthews25 Oktober 1993 (umur 30)Los Angeles, California, Amerika SerikatAlmamaterUniversitas New YorkPekerjaanPemeranTahun aktif2017–kiniDikenal atasHappy Death DayHappy Death Day 2U Rachel Lynn Matthews (lahir 25 Oktober 1993) adalah seorang pemeran asal Amerika Serikat. Ia dikenal karena membintangi film Happy Death Day dan sekuelnya, Happy Death Day 2U. Referensi Pranala luar Rachel Matthews di IMD...

Norwegian detective television series This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) Parts of this article (those related to Names of season 2 episodes) need to be updated. Please help update this article to reflect recent events or newly available information. (August 2017) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please...

 

Former American space corporation In this article, USA refers to the United Space Alliance, not the United States. Not to be confused with United Launch Alliance. United Space AllianceTypeLimited liability companyIndustrySpaceFoundedAugust 1995Defunct20 December 2019 HeadquartersHQ in Houston, Texas, locations in FL, AL, DCKey peopleMichael J. McCulley (CEO 2003–2007)ProductsSpaceflight operationsRevenueUS $2.0 billion (2005)[citation needed]Number of employees2,800 (2012)Paren...

 

Book by Xue Xinran This article is about a book. For the burial practice, see Sky burial. For other uses, see sky burial (disambiguation). This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Sky Burial – news · newspapers · books · scholar · JSTOR (April 2013) Sky Burial First editionAuthorXue XinranCo...

Bank in South Africa Capitec BankTrade nameCapitec Bank Holdings LimitedTypePublic companyTraded asJSE: CPIIndustryBankingFinancial servicesFounded1 March 2001; 22 years ago (2001-03-01)FoundersJannie Mouton Michiel Le Roux Riaan StassenHeadquarters5 Neutron Street, Techno Park, Stellenbosch, Western Cape, South AfricaArea servedSouth AfricaKey peopleGerrie Fourie (CEO)ProductsLoans, Investment Banking, Savings, Investments, Debit Cards, Credit Cards, Commercial BankingServi...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Majnu 1987 film – news · newspapers · books · scholar · JSTOR (September 2023) (Learn how and when to remove this template message) 1987 Indian filmMajnuTheatrical posterDirected byDasari Narayana RaoWritten byDasari Narayana RaoProduced byDasari PadmaStarringNagarjunaRajan...

 

Untuk kegunaan lain, lihat Pasuruan (disambiguasi). Untuk kegunaan lain, lihat PS. Stasiun Pasuruan SP18 Tampak depan Stasiun Pasuruan dengan papan KAI yang baru, 2022LokasiJalan Stasiun PasuruanTrajeng, Panggungrejo, Pasuruan, Jawa TimurIndonesiaKetinggian+3 mOperatorKereta Api IndonesiaDaerah Operasi IX Jember KAI CommuterLetak dari pangkal km 62+976 lintas Surabaya Kota-Probolinggo-Kalisat-Panarukan km 0+000 lintas Pasuruan-Warungdowo-Winongan[1] Jumlah peron2 peron sisi cukup ting...

1918 ← 1919 → 1920素因数分解 19×101二進法 11101111111三進法 2122002四進法 131333五進法 30134六進法 12515七進法 5411八進法 3577十二進法 113B十六進法 77F二十進法 4FJ二十四進法 37N三十六進法 1HBローマ数字 MCMXIX漢数字 千九百十九大字 千九百拾九算木 1919(千九百十九、一九一九、せんきゅうひゃくじゅうきゅう)は、自然数また整数において、1918の次で1920の前の数である。 ...

 

L'Empire Ming vers 1580 L' économie de la Chine sous la dynastie Ming (1368–1644) est florissante, le pays étant alors la première puissance économique mondiale. La période des Ming est considérée comme étant l'un des trois âges d'or de la Chine, les deux autres étant les périodes Han et Tang. Cette période est marquée par l'influence politique croissante des marchands, l'affaiblissement progressif de la domination impériale et les progrès technologiques . Monnaies Au début ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!