Non-integer base of numeration

A non-integer representation uses non-integer numbers as the radix, or base, of a positional numeral system. For a non-integer radix β > 1, the value of

is

The numbers di are non-negative integers less than β. This is also known as a β-expansion, a notion introduced by Rényi (1957) and first studied in detail by Parry (1960). Every real number has at least one (possibly infinite) β-expansion. The set of all β-expansions that have a finite representation is a subset of the ring Z[β, β−1].

There are applications of β-expansions in coding theory[1] and models of quasicrystals.[2]

Construction

β-expansions are a generalization of decimal expansions. While infinite decimal expansions are not unique (for example, 1.000... = 0.999...), all finite decimal expansions are unique. However, even finite β-expansions are not necessarily unique, for example φ + 1 = φ2 for β = φ, the golden ratio. A canonical choice for the β-expansion of a given real number can be determined by the following greedy algorithm, essentially due to Rényi (1957) and formulated as given here by Frougny (1992).

Let β > 1 be the base and x a non-negative real number. Denote by x the floor function of x (that is, the greatest integer less than or equal to x) and let {x} = x − ⌊x be the fractional part of x. There exists an integer k such that βkx < βk+1. Set

and

For k − 1 ≥  j > −∞, put

In other words, the canonical β-expansion of x is defined by choosing the largest dk such that βkdkx, then choosing the largest dk−1 such that βkdk + βk−1dk−1x, and so on. Thus it chooses the lexicographically largest string representing x.

With an integer base, this defines the usual radix expansion for the number x. This construction extends the usual algorithm to possibly non-integer values of β.

Conversion

Following the steps above, we can create a β-expansion for a real number (the steps are identical for an , although n must first be multiplied by −1 to make it positive, then the result must be multiplied by −1 to make it negative again).

First, we must define our k value (the exponent of the nearest power of β greater than n, as well as the amount of digits in , where is n written in base β). The k value for n and β can be written as:

After a k value is found, can be written as d, where

for k − 1 ≥  j > −∞. The first k values of d appear to the left of the decimal place.

This can also be written in the following pseudocode:[3]

function toBase(n, b) {
	k = floor(log(b, n)) + 1
	precision = 8
	result = ""

	for (i = k - 1, i > -precision-1, i--) {
		if (result.length == k) result += "."
		
		digit = floor((n / b^i) mod b)
		n -= digit * b^i
		result += digit
	}

	return result
}

Note that the above code is only valid for and , as it does not convert each digits to their correct symbols or correct negative numbers. For example, if a digit's value is 10, it will be represented as 10 instead of A.

Example implementation code

To base π

  • JavaScript:[3]
    function toBasePI(num, precision = 8) {    
        let k = Math.floor(Math.log(num)/Math.log(Math.PI)) + 1;
        if (k < 0) k = 0;
    
        let digits = [];
    
        for (let i = k-1; i > (-1*precision)-1; i--) {
            let digit = Math.floor((num / Math.pow(Math.PI, i)) % Math.PI);
            num -= digit * Math.pow(Math.PI, i);
            digits.push(digit);
    
            if (num < 0.1**(precision+1) && i <= 0)
                break;
        }
    
        if (digits.length > k)
            digits.splice(k, 0, ".");
    
        return digits.join("");
    }
    

From base π

  • JavaScript:[3]
    function fromBasePI(num) {
        let numberSplit = num.split(/\./g);
        let numberLength = numberSplit[0].length;
    
        let output = 0;
        let digits = numberSplit.join("");
    
        for (let i = 0; i < digits.length; i++) {
            output += digits[i] * Math.pow(Math.PI, numberLength-i-1);
        }
    
        return output;
    }
    

Examples

Base 2

Base 2 behaves in a very similar way to base 2 as all one has to do to convert a number from binary into base 2 is put a zero digit in between every binary digit; for example, 191110 = 111011101112 becomes 1010100010101000101012 and 511810 = 10011111111102 becomes 10000010101010101010101002. This means that every integer can be expressed in base 2 without the need of a decimal point. The base can also be used to show the relationship between the side of a square to its diagonal as a square with a side length of 12 will have a diagonal of 102 and a square with a side length of 102 will have a diagonal of 1002. Another use of the base is to show the silver ratio as its representation in base 2 is simply 112. In addition, the area of a regular octagon with side length 12 is 11002, the area of a regular octagon with side length 102 is 1100002, the area of a regular octagon with side length 1002 is 110000002, etc…

Golden base

In the golden base, some numbers have more than one decimal base equivalent: they are ambiguous. For example: 11φ = 100φ.

Base ψ

There are some numbers in base ψ that are also ambiguous. For example, 101ψ = 1000ψ.

Base e

With base e the natural logarithm behaves like the common logarithm as ln(1e) = 0, ln(10e) = 1, ln(100e) = 2 and ln(1000e) = 3.

The base e is the most economical choice of radix β > 1,[4] where the radix economy is measured as the product of the radix and the length of the string of symbols needed to express a given range of values.

Base π

Base π can be used to more easily show the relationship between the diameter of a circle to its circumference, which corresponds to its perimeter; since circumference = diameter × π, a circle with a diameter 1π will have a circumference of 10π, a circle with a diameter 10π will have a circumference of 100π, etc. Furthermore, since the area = π × radius2, a circle with a radius of 1π will have an area of 10π, a circle with a radius of 10π will have an area of 1000π and a circle with a radius of 100π will have an area of 100000π.[5]

Properties

In no positional number system can every number be expressed uniquely. For example, in base ten, the number 1 has two representations: 1.000... and 0.999.... The set of numbers with two different representations is dense in the reals,[6] but the question of classifying real numbers with unique β-expansions is considerably more subtle than that of integer bases.[7]

Another problem is to classify the real numbers whose β-expansions are periodic. Let β > 1, and Q(β) be the smallest field extension of the rationals containing β. Then any real number in [0,1) having a periodic β-expansion must lie in Q(β). On the other hand, the converse need not be true. The converse does hold if β is a Pisot number,[8] although necessary and sufficient conditions are not known.

See also

References

Footnotes

  1. ^ Kautz 1965
  2. ^ Burdik et al. 1998; Thurston 1989
  3. ^ a b c "Home", decimalsystem.js.org
  4. ^ Hayes 2001
  5. ^ "Weird Number Bases", DataGenetics, retrieved 2018-02-01
  6. ^ Petkovšek 1990
  7. ^ Glendinning & Sidorov 2001
  8. ^ Schmidt 1980

Sources

Further reading

  • Sidorov, Nikita (2003), "Arithmetic dynamics", in Bezuglyi, Sergey; Kolyada, Sergiy (eds.), Topics in dynamics and ergodic theory. Survey papers and mini-courses presented at the international conference and US-Ukrainian workshop on dynamical systems and ergodic theory, Katsiveli, Ukraine, August 21–30, 2000, Lond. Math. Soc. Lect. Note Ser., vol. 310, Cambridge: Cambridge University Press, pp. 145–189, ISBN 978-0-521-53365-2, Zbl 1051.37007

Read other articles:

Radio station in Temecula, California KTMQTemecula, CaliforniaBroadcast areaTemecula ValleyInland EmpireFrequency103.3 MHzBrandingQ 103.3ProgrammingFormatActive rockOwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsKFOO, KGGI, KMYT, KPWKHistoryFirst air date2000; 23 years ago (2000) (as KFXM)Former call signsKFXM (2000–2001)KGBB (2001–2004)Call sign meaningK TeMecula Valley's Q103.3Technical informationFacility ID85012ClassAERP1,250 wattsHAAT218 meters (71...

 

1963 film by George Sidney A Ticklish AffairDirected byGeorge SidneyScreenplay byRuth Brooks FlippenBased onMoon Walk1962 Ladies Home Journalby Barbara LutherProduced byJoe PasternakStarringShirley JonesGig YoungRed ButtonsCinematographyMilton R. KrasnerEdited byJohn McSweeney, Jr.Music byGeorge StollColor processMetrocolorProductioncompaniesEuterpe, Inc.Distributed byMetro-Goldwyn-Mayer (MGM)Release date August 18, 1963 (1963-08-18) Running time88 minutesCountryUnited StatesLa...

 

Regering-Frère-Orban I Regeringsleider Walthère Frère-Orban Coalitie ​ Liberale Partij Zetels Kamer 73 van 124 (9 juni 1868) Premier Walthère Frère-Orban Aantreden 3 januari 1868 Ontslagnemend 16 juni 1870 Einddatum 2 juli 1870 Voorganger Rogier II Opvolger D'Anethan Portaal    België De regering-Frère-Orban I (3 januari 1868 - 16 juni 1870) was een Belgische regering. Deze werd tot stand gebrachten door de Liberale Partij. Ze volgde de regering-Rogier II, nadat Charles...

 

Olaf Tufte Olaf TufteKjetil Borch e Tufte em 2014 Remo Nome completo Olaf Karl Tufte Nascimento 27 de abril de 1976 (47 anos)Tønsberg, Vestfold Nacionalidade norueguês Medalhas Jogos Olímpicos Ouro Atenas 2004 Skiff simples Ouro Pequim 2008 Skiff simples Prata Sydney 2000 Skiff duplo Bronze Rio 2016 Skiff duplo Campeonatos Mundiais Ouro Lucerna 2001 Skiff simples Ouro Milão 2003 Skiff simples Prata Kaizu 2005 Skiff simples Bronze St. Catharines 1999 Skiff duplo Bronze Sevilha 20...

 

У Вікіпедії є статті про інші значення цього терміна: GPI. Глюкозофосфатізомераза Наявні структури PDBПошук ортологів: PDBe RCSB Список кодів PDB 1NUH, 1IAT, 1IRI, 1JIQ, 1JLH Ідентифікатори Символи GPI, AMF, GNPI, NLK, PGI, PHI, SA-36, SA36, glucose-6-phosphate isomerase Зовнішні ІД OMIM: 172400 HomoloGene: 145 GeneCards: GPI Пов'язані генетичн

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Liya Bahari Indah, Wangi-Wangi Selatan, Wakatobi – berita · surat kabar · buku · cendekiawan · JSTOR Liya Bahari IndahDesaNegara IndonesiaProvinsiSulawesi TenggaraKabupatenWakatobiKecamatanWangi-Wan...

 

Hôpital central de la vallée de la KymiKymenlaakson keskussairaalaHôpital central de la vallée de la KymiPrésentationType Hôpital, hôpital centralDestination actuelle HôpitalArchitecte Jaakko Paatela Veli Paatela équipe Jukka Similä Maija Kairamo Pentti Kauppila Bengt Mattson Kaija Narinen Marja Pöyry Peter Rittmeyer Veikko Vasko Folke Wickström Construction 1967Propriétaire KymsoteGestionnaire Région de bien-être de la Vallée de la Kymi (depuis le 1er janvier 2023)Site web ww...

 

London Underground station For the proposed Crossrail station, see Ladbroke Grove railway station. Ladbroke Grove Ladbroke GroveLocation of Ladbroke Grove in Greater LondonLocationLadbroke GroveLocal authorityKensington and ChelseaManaged byLondon UndergroundNumber of platforms2Fare zone2London Underground annual entry and exit2018 5.34 million[1]2019 6.13 million[2]2020 2.84 million[3]2021 2.65 million[4]2022 5.10 million[5]Railway companiesOriginal co...

 

Women's 4 × 100 metres relay at the 2017 IAAF World RelaysVenueThomas Robinson StadiumDates23 April (heats & final)Competitors59 from 14 nationsWinning time42.14Medalists  Alexandra BurghardtLisa MayerTatjana PintoRebekka Haase   Germany Simone FaceyNatasha MorrisonGayon EvansSashalee ForbesChristania Williams*   Jamaica Liang XiaojingWei YongliTao YujiaYuan QiqiGe Manqi*   China← 20152019 → Event...

 

Dominican baseball player Baseball player Junior FélixFélix in 1988Right fielder / Center fielderBorn: (1967-10-03) October 3, 1967 (age 56)Laguna Salada, Dominican RepublicBatted: SwitchThrew: RightMLB debutMay 3, 1989, for the Toronto Blue JaysLast MLB appearanceAugust 11, 1994, for the Detroit TigersMLB statisticsBatting average.264Home runs55Runs batted in280KBO statisticsBatting average.264Home run19Runs batted in79 Teams Toronto Blue Jays (1989–199...

 

Azerbaijani footballer (born 2003) Cəlal Hüseynov Hüseynov in 2022Personal informationFull name Cəlal Hakim oğlu HüseynovDate of birth (2003-01-02) 2 January 2003 (age 20)Place of birth AzerbaijanHeight 1.83 m (6 ft 0 in)Position(s) DefenderTeam informationCurrent team ArdaNumber 18Senior career*Years Team Apps (Gls)2020–2023 Zira 35 (1)2022–2023 → Shamakhi (loan) 33 (0)2023– Arda 8 (1)International career‡2019 Azerbaijan U17 5 (0)2021 Azerbaijan U19 3 (0)2...

 

Nudity in public indoor pools Further information: Nudity See also: Nude swimming and Childhood nudity Floating Bath at The Battery, New York City, 1908 For almost a century in the United States, men and boys swam nude in indoor swimming pools, primarily for education or athletics, not recreation. Male nude swimming had been customary in natural bodies of water, which was not viewed as a social problem until the 18th century. When the tradition of skinny-dipping in secluded spots had become m...

 

Former statutory board in Singapore Agri-Food and Veterinary Authority of SingaporeAgency overviewFormed1 April 2000; 23 years ago (2000-04-01)Preceding agencyPrimary Production Department (PPD)Dissolved1 April 2019; 4 years ago (2019-04-01)Superseding agenciesSingapore Food Agency (SFA)National Parks Board (NParks)JurisdictionGovernment of SingaporeHeadquarters52 Jurong Gateway Road, #14-01, Singapore 608550Annual budgetS$125.75 million (2014)[1]Ag...

 

فرانتس بكنباور Franz Beckenbauer معلومات شخصية الاسم الكامل فرانتس أنتون بكنباور الميلاد 11 سبتمبر 1945 (العمر 78 سنة)ميونيخ، ألمانيا الطول 1.81 م (5 قدم 11 1⁄2 بوصة) مركز اللعب مدافع الجنسية ألماني أبناء شتيفان بكنباور  مسيرة الشباب سنوات فريق 1951–1959 ميونيخ 1906 1959–1964 بايرن �...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) ديك لاسي   معلومات شخصية الميلاد 13 نوفمبر 1935 (88 سنة)  كوينسي، ماساتشوستس  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة سيراكيوزأكادي�...

 

Daerah manfaat jalan Daerah Manfaat Jalan disingkat DAMAJA merupakan ruang sepanjang jalan yang dibatasi oleh lebar tinggi dan kedalaman ruang batas tertentu. Ruang tersebut diperuntukkan bagi median, perkerasan jalan, jalur pemisah, bahu jalan, saluran tepi jalan, trotoar, lereng, ambang pengaman, timbunan dan galian, gorong-gorong, perlengkapan jalan dan bangunan pelengkap lainnya. Lebar Damaja ditetapkan oleh Pembina Jalan sesuai dengan keperluannya. Tinggi minimum 5.0 meter dan kedalaman ...

 

American actor and film actor George HardyGeorge Hardy in 2015Born (1954-10-16) October 16, 1954 (age 69)Alexander City, Alabama, U.S.Alma materAuburn UniversityUAB School of DentistryOccupation(s)Actor, dentistYears active1990–present George Hardy (born October 16, 1954) is an American dentist and actor who played the leading role in the cult horror film Troll 2 (1990), which is regarded as one of the worst films ever made. In 2021 he was in the horror movie CYST. Career Har...

 

This article is about the Vangelis album. For other albums, see Dragon (disambiguation) § Albums. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2011) (Learn how and when to remove this template message) 1978 studio album by VangelisThe DragonStudio album by VangelisReleased1978RecordedJune 1971StudioMarquee Studios, LondonGenreProgres...

 

Defence ForcesDirectorate of Military IntelligenceIrish: Stiúrthóireacht na FaisnéiseBadge of the Irish Defence ForcesCountry IrelandBranchDFHQTypeMilitary intelligenceRoleCounterintelligenceCounter-terrorismSecurity of critical infrastructureSizeUnknownPart of Defence ForcesGarrison/HQMcKee Barracks, Dublin[1]CommandersDirector of Military Intelligence (D J2)Currently unknownInsigniaAbbreviationJ2[2] / INT[3]Military unit The Directorate of Military Intel...

 

British mid-engined single-decker bus and coach chassis Motor vehicle Leyland LeopardBarton Transport Plaxton Supreme IV bodied Leyland Leopard in Long Whatton in 1989OverviewManufacturerLeylandProduction1959–1982AssemblyFarington, EnglandBody and chassisDoors1, 2, or 3Floor typeStep entrancePowertrainEngine Leyland O.600 Leyland O.680 Leyland TL11 Capacity 600 cubic inches (9.8 litres) 680 cubic inches (11.1 litres) Transmission Leyland manual/pneumocyclic ZF synchromesh DimensionsLen...