Nilradical of a ring

In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements:

It is thus the radical of the zero ideal. If the nilradical is the zero ideal, the ring is called a reduced ring. The nilradical of a commutative ring is the intersection of all prime ideals.

In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article Radical of a ring for more on this.

The nilradical of a Lie algebra is similarly defined for Lie algebras.

Commutative rings

The nilradical of a commutative ring is the set of all nilpotent elements in the ring, or equivalently the radical of the zero ideal. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the binomial formula), and the product of any element with a nilpotent element is nilpotent (by commutativity). It can also be characterized as the intersection of all the prime ideals of the ring (in fact, it is the intersection of all minimal prime ideals).

Proposition[1] —  Let be a commutative ring. Then the nilradical of equals the intersection of all prime ideals of

Proof

Firstly, the nilradical is contained in every prime ideal. Indeed, if one has for some positive integer Since every ideal contains 0 and every prime ideal that contains a product, here contains one of its factors, one deduces that every prime ideal contains

Conversely, let we have to prove that there is a prime ideal that does not contains Consider the set of all ideals that do not contain any power of One has by definition of the nilradical. For every chain of ideals in the union is an ideal that belongs to since otherwise it would contain a power of that must belong to some contradicting the definition of

So, is a partially ordered by set inclusion such that every chain has a least upper bound. Thus, Zorn's lemma applies, and there exists a maximal element . We have to prove that is a prime ideal. If it were not prime there would be two elements and such that and . By maximality of one has and So there exist positive integers and such that and It follows that contadicting the fact that is in . This finishes the proof, since we have proved the existence of a prime ideal that does not contain

A ring is called reduced if it has no nonzero nilpotent. Thus, a ring is reduced if and only if its nilradical is zero. If R is an arbitrary commutative ring, then the quotient of it by the nilradical is a reduced ring and is denoted by .

Since every maximal ideal is a prime ideal, the Jacobson radical — which is the intersection of maximal ideals — must contain the nilradical. A ring R is called a Jacobson ring if the nilradical and Jacobson radical of R/P coincide for all prime ideals P of R. An Artinian ring is Jacobson, and its nilradical is the maximal nilpotent ideal of the ring. In general, if the nilradical is finitely generated (e.g., the ring is Noetherian), then it is nilpotent.

Noncommutative rings

For noncommutative rings, there are several analogues of the nilradical. The lower nilradical (or Baer–McCoy radical, or prime radical) is the analogue of the radical of the zero ideal and is defined as the intersection of the prime ideals of the ring. The analogue of the set of all nilpotent elements is the upper nilradical and is defined as the ideal generated by all nil ideals of the ring, which is itself a nil ideal. The set of all nilpotent elements itself need not be an ideal (or even a subgroup), so the upper nilradical can be much smaller than this set. The Levitzki radical is in between and is defined as the largest locally nilpotent ideal. As in the commutative case, when the ring is Artinian, the Levitzki radical is nilpotent and so is the unique largest nilpotent ideal. Indeed, if the ring is merely Noetherian, then the lower, upper, and Levitzki radical are nilpotent and coincide, allowing the nilradical of any Noetherian ring to be defined as the unique largest (left, right, or two-sided) nilpotent ideal of the ring.

References

  1. ^ Atiyah, Michael; Macdonald, Ian (1994). Introduction to Commutative Algebra. Addison-Wesley. ISBN 0-201-40751-5., p.5

Notes

Read other articles:

Office in Columbia, South CarolinaTower at 1301 GervaisGeneral informationStatusCompletedTypeOfficeLocationGervais and Sumter Streets, Columbia, South CarolinaCoordinates34°00′08″N 81°01′53″W / 34.0021°N 81.0315°W / 34.0021; -81.0315Completed1973HeightRoof278 ft (85 m)[1]Technical detailsFloor count20Design and constructionArchitect(s)Lyles, Bissett, Carlisle, and Wolff (LBC&W) Tower at 1301 Gervais is a high-rise office building in Co...

 

Praha hlavní nádraží GesamtansichtGesamtansicht Daten Bauform Durchgangsbahnhof Bahnsteiggleise 16 (davon 3 Kopfgleise) Abkürzung Praha hl.n. IBNR 5400014 Eröffnung 14. Dezember 1871 Architektonische Daten Baustil Jugendstil Architekt Josef Fanta Lage Stadt/Gemeinde Prag Ort/Ortsteil Vinohrady Hauptstadt Prag Staat Tschechien Koordinaten 50° 4′ 59″ N, 14° 26′ 7″ O50.08305614.435278Koordinaten: 50° 4′ 59″ N, 14° 26′ 7

 

Russian government ministryMinistry of Digital Development, Communications and Mass MediaМинистерство цифрового развития связи и массовых коммуникаций Российской ФедерацииMinistry emblemHeadquarters of the ministry in the Central Telegraph BuildingAgency overviewFormed2008Preceding agenciesMinistry of Information Technologies and Communications (2004-2008)Ministry of Communications and Informatics (1999-2004)Ministry of...

غرفة ثقافة الرايخ   تفاصيل الوكالة الحكومية البلد ألمانيا النازية  تأسست 22 سبتمبر 1933  تم إنهاؤها 10 أكتوبر 1945  المركز برلين  الإدارة تعديل مصدري - تعديل   غرفة ثقافة الرايخ ( Reichskulturkammer ) وكالة حكومية في ألمانيا النازية. تم تأسيسها بموجب القانون في 22 سبتمبر 1933 في س

 

This is an archive of past discussions. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. Archive 10 ← Archive 15 Archive 16 Archive 17 Archive 18 Archive 19 Archive 20 ArbCom 2019 election voter message Hello! Voting in the 2019 Arbitration Committee elections is now open until 23:59 on Monday, 2 December 2019. All eligible users are allowed to vote. Users with alternate accounts may only vote on...

 

Wappen Deutschlandkarte 48.8333333333339.4166666666667Koordinaten: 48° 50′ N, 9° 25′ O Basisdaten (Stand 1972) Bestandszeitraum: 1938–1972 Bundesland: Baden-Württemberg Regierungsbezirk: Nordwürttemberg Verwaltungssitz: Waiblingen Fläche: 438 km2 Einwohner: 243.725 (27. Mai 1970) Bevölkerungsdichte: 556 Einwohner je km2 Kfz-Kennzeichen: WN Kreisschlüssel: 08 1 49 Kreisgliederung: 61 Gemeinden Lage des Landkreises Waiblingen in Bade...

Naval air search radarType 382 installed on a Type 054A frigate. The Type 382 (or H/LJQ-382) is a 3-D naval air search radar developed by the People's Republic of China.[1][2] It uses two back-to-back planar arrays on a rotating mount.[1] The relationship between the Type 382 and the Russian Fregat MAE-3 radar (NATO reporting name: Top Plate) is unclear. In 2015, Type 382 was identified as the Fregat by Kirchberger[3] and Jane's Fighting Ships,[4] or po...

 

BolanoKecamatanNegara IndonesiaProvinsiSulawesi TengahKabupatenParigi MoutongPemerintahan • Camat-Kode Kemendagri72.08.21 Kode BPS7208063 Desa/kelurahan13 Kantor Camat Bolano Bolano adalah sebuah kecamatan di Kabupaten Parigi Moutong, Sulawesi Tengah, Indonesia. Bolano merupakan kecamatan hasil pemekaran dari kecamatan Moutong. Nama Bolano diambil dari nama desa Bolano. Pusat pemerintahan berada desa Bolano. Batas Wilayah Sebelah Barat: Kecamatan Ongka Malino Sebalah Selatan:...

 

Geg redirects here. For Spokane International Airport (IATA: GEG), see Spokane International Airport. One of two major varieties of the Albanian language GheggegnishtjaRegionAlbania, Kosovo, North Macedonia, Montenegro, SerbiaNative speakers4.1 million (2012–2021)[1]Language familyIndo-European Paleo-BalkanAlbanianGhegEarly formsProto-Indo-European Proto-Albanian Dialects Istrian Albanian † Arbanasi Northeastern Gheg Northwestern Gheg Upper Reka Northern Gheg Southern Gheg La...

British musicologist (1888–1959) Eric BlomBlom photographed by Howard Coster in 1942Born(1888-08-20)20 August 1888Bern, SwitzerlandDied11 April 1959(1959-04-11) (aged 70)NationalitySwiss and British Eric Walter Blom CBE (20 August 1888 – 11 April 1959) was a Swiss-born British-naturalised[1] music lexicographer, music critic and writer. He is best known as the editor of the 5th edition of Grove's Dictionary of Music and Musicians (1954). Early life Blom was born ...

 

Species of turtle Chicken turtleTemporal range: 5–0 Ma PreꞒ Ꞓ O S D C P T J K Pg N ↓ Pliocene–recent[1] Chicken turtle on land Conservation status Secure (NatureServe)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Reptilia Order: Testudines Suborder: Cryptodira Superfamily: Testudinoidea Family: Emydidae Subfamily: Deirochelyinae Genus: Deirochelys Species: D. reticularia Binomial name Deirochelys reticula...

 

10th-century katholikon of a now-vanished monastery in Athens, Greece For other uses, see Pantanassa (disambiguation). The Pantanassa church The Church of the Pantanassa (Greek: Εκκλησία της Παντανάσσης) or of the Dormition of the Theotokos (Ιερός Ναός Κοιμήσεως της Θεοτόκου) is the 10th-century katholikon of a now-vanished monastery in Monastiraki Square, between Athinas and Mitropoleos streets, facing the Monastiraki station, in central Ath...

Japanese engineer (1929–2021) Isamu Akasaki赤﨑 勇Isamu AkasakiBorn(1929-01-30)January 30, 1929Chiran, Kawanabe District, Kagoshima Prefecture, Empire of JapanDiedApril 1, 2021(2021-04-01) (aged 92)Nagoya, Aichi, JapanNationalityJapaneseAlma materKyoto UniversityNagoya UniversityAwardsAsahi Prize (2001)Takeda Award (2002)Kyoto Prize (2009)IEEE Edison Medal (2011)Nobel Prize in Physics (2014)Charles Stark Draper Prize (2015)Scientific careerFieldsPhysics, EngineeringInstitutions...

 

German keyboardist Christian Flake LorenzLorenz in 2013Background informationBirth nameChristian LorenzAlso known asDoktor Lorenz, FlakeBorn (1966-11-16) 16 November 1966 (age 57)East Berlin, East GermanyGenresNeue Deutsche Härte, industrial metal, punk rock (early)Occupation(s)MusicianInstrument(s)KeyboardsYears active1983–presentMember ofRammsteinFormerly ofFeeling BDie Magdalene Keibel KomboMusical artist Christian Flake Lorenz (German: [ˈkʁɪsti̯a(ː)n ˈflaːkə ˈloːʁɛ...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: List of companions in Doctor Who spin-offs – news · newspapers · books · scholar · JSTOR (January 2010) This is a list of fictional characters who were companions of the Doctor, in various spin-off media based on the long-running British science ficti...

State park in Tucker County, West Virginia Canaan Valley Resort State ParkIUCN category III (natural monument or feature)[1]Blackwater River in the park.Location of Canaan Valley Resort State Park in West VirginiaShow map of West VirginiaCanaan Valley Resort State Park (the United States)Show map of the United StatesLocationTucker, West Virginia, United StatesCoordinates39°01′25″N 79°27′57″W / 39.02361°N 79.46583°W / 39.02361; -79.46583Area6,015 acr...

 

Sotho-Tswana ethnic group of northeast South Africa Pedi peopleBapediPedi living culture routeLimpopo, South AfricaTotal population7,004,000[1]Regions with significant populations South Africa4,618,576 (9.1% of population) Botswana14,000LanguagesFirst languagePedi Second languageEnglish, Afrikaans, other South African Bantu languagesReligionChristianity, African traditional religionRelated ethnic groupsLobedu people, Sotho people, Tswana people, Pulana people, Lozi people, K...

 

Any film not long enough to be considered a feature film Short Subject redirects here. For the underground anti-war film, see Mickey Mouse in Vietnam. A short film is a film. The Academy of Motion Picture Arts and Sciences defines a short film as an original motion picture that has a running time of 40 minutes or less, including all credits.[1] In the United States, short films were generally termed short subjects from the 1920s into the 1970s when confined to two 35 mm reels or less,...

Cet article est une ébauche concernant le jeu vidéo et l’informatique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) (voir l’aide à la rédaction). APh Technological ConsultingHistoireFondation 1974CadreType Développeur de jeux vidéoSiège PasadenaPays  États-Unismodifier - modifier le code - modifier Wikidata APh Technological Consulting (parfois appelée APh Technology Consultants) est une société d'ingénierie américaine, basée à Pasadena (...

 

Cinta SejatiGenre Drama Roman PembuatMD EntertainmentSutradaraEncep MasdukiPemeran Chelsea Olivia Evan Sanders Olla Ramlan Desy Ratnasari Ferry Salim Ajun Perwira Hasninda Ramadhani Penggubah lagu temaSammy SimorangkirLagu pembukaKesedihanku — Sammy SimorangkirLagu penutupKesedihanku — Sammy SimorangkirNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim2Jmlh. episode38 (daftar episode)ProduksiProduser Dhamoo Punjabi Manoj Punjabi Pengaturan kameraMulti-kameraDurasi60 menitRumah pr...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!