Multiclass classification

In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, an orange, or an apple is a multiclass classification problem, with three possible classes (banana, orange, apple), while deciding on whether an image contains an apple or not is a binary classification problem (with the two possible classes being: apple, no apple).

While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.

Multiclass classification should not be confused with multi-label classification, where multiple labels are to be predicted for each instance (e.g., predicting that an image contains both an apple and an orange, in the previous example).

General strategies

The existing multi-class classification techniques can be categorised into

  • transformation to binary
  • extension from binary
  • hierarchical classification.[1]

Transformation to binary

This section discusses strategies for reducing the problem of multiclass classification to multiple binary classification problems. It can be categorized into one vs rest and one vs one. The techniques developed based on reducing the multi-class problem into multiple binary problems can also be called problem transformation techniques.

One-vs.-rest

One-vs.-rest[2]: 182, 338  (OvR or one-vs.-all, OvA or one-against-all, OAA) strategy involves training a single classifier per class, with the samples of that class as positive samples and all other samples as negatives. This strategy requires the base classifiers to produce a real-valued score for its decision (see also scoring rule), rather than just a class label; discrete class labels alone can lead to ambiguities, where multiple classes are predicted for a single sample.[2]: 182 [note 1]

In pseudocode, the training algorithm for an OvR learner constructed from a binary classification learner L is as follows:

Inputs:
  • L, a learner (training algorithm for binary classifiers)
  • samples X
  • labels y where yi ∈ {1, … K} is the label for the sample Xi
Output:
  • a list of classifiers fk for k ∈ {1, …, K}
Procedure:
  • For each k in {1, …, K}
    • Construct a new label vector z where zi = yi if yi = k and zi = 0 otherwise
    • Apply L to X, z to obtain fk

Making decisions means applying all classifiers to an unseen sample x and predicting the label k for which the corresponding classifier reports the highest confidence score:

Although this strategy is popular, it is a heuristic that suffers from several problems. Firstly, the scale of the confidence values may differ between the binary classifiers. Second, even if the class distribution is balanced in the training set, the binary classification learners see unbalanced distributions because typically the set of negatives they see is much larger than the set of positives.[2]: 338 

One-vs.-one

In the one-vs.-one (OvO) reduction, one trains K (K − 1) / 2 binary classifiers for a K-way multiclass problem; each receives the samples of a pair of classes from the original training set, and must learn to distinguish these two classes. At prediction time, a voting scheme is applied: all K (K − 1) / 2 classifiers are applied to an unseen sample and the class that got the highest number of "+1" predictions gets predicted by the combined classifier.[2]: 339 

Like OvR, OvO suffers from ambiguities in that some regions of its input space may receive the same number of votes.[2]: 183 

Extension from binary

This section discusses strategies of extending the existing binary classifiers to solve multi-class classification problems. Several algorithms have been developed based on neural networks, decision trees, k-nearest neighbors, naive Bayes, support vector machines and extreme learning machines to address multi-class classification problems. These types of techniques can also be called algorithm adaptation techniques.

Neural networks

Multiclass perceptrons provide a natural extension to the multi-class problem. Instead of just having one neuron in the output layer, with binary output, one could have N binary neurons leading to multi-class classification. In practice, the last layer of a neural network is usually a softmax function layer, which is the algebraic simplification of N logistic classifiers, normalized per class by the sum of the N-1 other logistic classifiers. Neural Network-based classification has brought significant improvements and scopes for thinking from different perspectives.[3][4]

Extreme learning machines

Extreme learning machines (ELM) is a special case of single hidden layer feed-forward neural networks (SLFNs) wherein the input weights and the hidden node biases can be chosen at random. Many variants and developments are made to the ELM for multiclass classification.

k-nearest neighbours

k-nearest neighbors kNN is considered among the oldest non-parametric classification algorithms. To classify an unknown example, the distance from that example to every other training example is measured. The k smallest distances are identified, and the most represented class by these k nearest neighbours is considered the output class label.

Naive Bayes

Naive Bayes is a successful classifier based upon the principle of maximum a posteriori (MAP). This approach is naturally extensible to the case of having more than two classes, and was shown to perform well in spite of the underlying simplifying assumption of conditional independence.

Decision trees

Decision tree learning is a powerful classification technique. The tree tries to infer a split of the training data based on the values of the available features to produce a good generalization. The algorithm can naturally handle binary or multiclass classification problems. The leaf nodes can refer to any of the K classes concerned.

Support vector machines

Support vector machines are based upon the idea of maximizing the margin i.e. maximizing the minimum distance from the separating hyperplane to the nearest example. The basic SVM supports only binary classification, but extensions have been proposed to handle the multiclass classification case as well. In these extensions, additional parameters and constraints are added to the optimization problem to handle the separation of the different classes.

Multi expression programming

Multi expression programming (MEP) is an evolutionary algorithm for generating computer programs (that can be used for classification tasks too). MEP has a unique feature: it encodes multiple programs into a single chromosome. Each of these programs can be used to generate the output for a class, thus making MEP naturally suitable for solving multi-class classification problems.

Hierarchical classification

Hierarchical classification tackles the multi-class classification problem by dividing the output space i.e. into a tree. Each parent node is divided into multiple child nodes and the process is continued until each child node represents only one class. Several methods have been proposed based on hierarchical classification.

Learning paradigms

Based on learning paradigms, the existing multi-class classification techniques can be classified into batch learning and online learning. Batch learning algorithms require all the data samples to be available beforehand. It trains the model using the entire training data and then predicts the test sample using the found relationship. The online learning algorithms, on the other hand, incrementally build their models in sequential iterations. In iteration t, an online algorithm receives a sample, xt and predicts its label ŷt using the current model; the algorithm then receives yt, the true label of xt and updates its model based on the sample-label pair: (xt, yt). Recently, a new learning paradigm called progressive learning technique has been developed.[5] The progressive learning technique is capable of not only learning from new samples but also capable of learning new classes of data and yet retain the knowledge learnt thus far.[6]

Evaluation

The performance of a multi-class classification system is often assessed by comparing the predictions of the system against reference labels with an evaluation metric. Common evaluation metrics are Accuracy or macro F1.[7]

See also

Notes

  1. ^ In multi-label classification, OvR is known as binary relevance and the prediction of multiple classes is considered a feature, not a problem.

References

  1. ^ Mohamed, Aly (2005). "Survey on multiclass classification methods". Technical Report, Caltech.
  2. ^ a b c d e Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer.
  3. ^ Ekin, Cubuk (2019). "Autoaugment: Learning augmentation strategies from data". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  4. ^ Kabir, H M Dipu (2023). "Reduction of class activation uncertainty with background information". arXiv:2305.03238 [cs.CV].
  5. ^ Venkatesan, Rajasekar; Meng Joo, Er (2016). "A novel progressive learning technique for multi-class classification". Neurocomputing. 207: 310–321. arXiv:1609.00085. doi:10.1016/j.neucom.2016.05.006. S2CID 12510650.
  6. ^ Venkatesan, Rajasekar. "Progressive Learning Technique".
  7. ^ Opitz, Juri (2024). "A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice". Transactions of the Association for Computational Linguistics. 12: 820–836. arXiv:2404.16958. doi:10.1162/tacl_a_00675.

Read other articles:

Wamena beralih ke halaman ini. Untuk kegunaan lain, lihat Wamena (disambiguasi). WamenaDistrikTaman Wio Silimo WamenaWamenaPeta lokasi Kecamatan WamenaKoordinat: 4°13′14″S 138°45′50″E / 4.220421°S 138.763962°E / -4.220421; 138.763962Koordinat: 4°13′14″S 138°45′50″E / 4.220421°S 138.763962°E / -4.220421; 138.763962Negara IndonesiaProvinsiPapua PegununganKabupatenJayawijayaPemerintahan • CamatLince Kogoya, ...

 

Ada usul agar artikel ini digabungkan dengan Vitamin B6. (Diskusikan) Piridoksina[1] Nama Nama IUPAC 4,5-Bis(hidroksimetil)- 2-metilpiridin- 3-ol Nama lain Vitamin B6 Penanda Nomor CAS 65-23-6 N Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} Nomor EC PubChem CID 1054 Nomor RTECS {{{value}}} CompTox Dashboard (EPA) DTXSID4023541 SMILES CC1=NC=C(C(=C1O)CO)CO Sifat Rumus kimia C8H11NO3 Massa molar 169,18 g/mol Titik lebur 159-162 °C Kecuali...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2019) خبز الكوليتشمعلومات عامةالمنشأ  روسيابلد المطبخ مطبخ روسيالترتيب قبل الإفطارالنوع خبز، باسكاتعديل - تعديل مصدري - تعديل ويكي بيانات كوليتش (بالروسية: кул

Pjotr Iljitsj Tsjaikovski Tsjaikovski’s Symfonie No. 3 in D majeur op. 29 is gecomponeerd in 1875. Pjotr Iljitsj Tsjaikovski startte op 5 juni van dat jaar met het componeren ervan op het landgoed van Vladimir Shilovsky in Ussovo. Hij voltooide het werk op 1 augustus in Verbovka en droeg het op aan Shilovsky. Ontstaan De derde is in zoverre uniek binnen Tsjaikovski's symfonieën dat zij de enige in majeur is en de enige vijfdelige. Het werk beleefde zijn première op 19 november 1875 in Mos...

 

Untuk grup musik, lihat Eurythmics. Untuk seni gerakan ekspresif, lihat Euritmi. Pendidikan musik Metodologi utama Metode Kodály Orff Schulwerk Euritmika Dalcroze Metode Suzuki Susunan instruksional Band sekolahPaduan suaraBand konserOrkes barisanOrkestra Organisasi internasional Int. Society for Music Education Int. Association for Jazz Education Organization of Kodály EducatorsInternational Kodály Society Organisasi nasional AS MENC: The National Association for Music EducationMusic Teac...

 

Kościół San Giovanni degli Eremiti w Palermo na Sycylii Wieża Kościoła San Giovanni degli Eremiti w Palermo na Sycylii Arkadowy dziedziniec przy kościele San Giovanni degli Eremiti Kościół San Giovanni degli Eremiti (Kościół pod wezwaniem Świętego Jana od Pustelników, wł. Chiesa di San Giovanni degli Eremiti) – zachowany do dziś średniowieczny kościół w centrum Palermo na Sycylii, posiadający wyraźne cechy architektury normańskiej i arabskiej. Obecnie kościół ma ...

Athletic programs of Millikin University Millikin Big BlueUniversityMillikin UniversityConferenceCollege Conference of Illinois and WisconsinNCAADivision IIIAthletic directorCraig WhiteLocationDecatur, IllinoisVarsity teams23 (12 men's and 11 women's)Football stadiumFrank M. Lindsay FieldBasketball arenaGriswold CenterBaseball stadiumWorkman Family Baseball FieldSoftball stadiumWorkman Family Softball FieldSoccer stadiumFrank M. Lindsay FieldOther venuesDecatur Indoor Sports CenterFairview Pa...

 

Magnetic Hill beralih ke halaman ini. Untuk kegunaan lain, lihat Magnetic Hill (disambiguasi). Magnetic Hill di Ladakh, India Sebuah bukit gravitasi, juga dikenal sebagai bukit magnet (dan kadang bukit misteri atau jalan gravitasi), adalah sebuah tempat yang daratan sekitarnya menciptakan ilusi optik sehingga turunan bukit paling landai terlihat seperti naikan bukit. Sehingga, sebuah mobil yang tidak direm akan terlihat berjalan ke atas. Terdapat ratusan bukit gravitasi di seluruh dunia. Penj...

 

Adolfo Federico de Mecklemburgo Gobernador de Togolandia 19 de octubre de 1912-31 de agosto de 1914Monarca Guillermo IIPredecesor Edmund Brückner Presidente del Comité Olímpico Alemán 1948-1949Predecesor Karl Ritter von Halt Presidente del Comité Olímpico Nacional de Alemania 1949-1951Sucesor Karl Ritter von Halt Información personalNacimiento 10 de octubre de 1873Schwerin, Gran Ducado de Mecklemburgo-SchwerinFallecimiento 5 de agosto de 1969Eutin, Alemania OccidentalSepultura Schleswi...

For the play based on this historical character, see Barbara Frietchie. American patriot during the American Civil War Barbara FritchieFritchie in 1862BornDecember 3, 1766Lancaster, PennsylvaniaDiedDecember 18, 1862Frederick, MarylandKnown forBecoming a Unionist folk hero during the Civil WarSpouseJohn Casper Fritchie (m. 1806) Barbara Fritchie (née Hauer; December 3, 1766 – December 18, 1862), also known as Barbara Frietchie, and sometimes spelled Frietschie,[1] was a Un...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 福岡県道401号宗像若宮線 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2013年6月) 一般県道 福岡県道401号 宗像若宮...

 

Liturgical year of the Anglican Church of Canada Prior to the revision of the Anglican Church of Canada's (ACC) Book of Common Prayer (BCP) in 1962, the national church followed the liturgical calendar of the 1918 Canadian Book of Common Prayer. Throughout most of the twentieth century, the situation in Canada resembled that which pertained in much of the Anglican Communion: There was uncertainty as to whether post-Reformation figures (with the exception of the martyred Charles I) could or sh...

International sporting eventMen's team epée at the 2023 Pan American GamesVenueParalympic Training CenterDatesNovember 2Competitors18 from 10 nationsMedalists Curtis McDowaldSamuel ImrekSamuel Larsen  United States Nicholas ZhangFynn FafardDylan French  Canada Jesús LugonesAlessandro TaccaniAgustín Gusman  Argentina«2019 2027» Fencing at the2023 Pan American GamesQualificationÉpéemenwomenTeam épéemenwomenFoilmenwomenTeam foi...

 

Mahesh VermaVice Chancellor of GGSIPUIncumbentAssumed office 1 August 2019Preceded byAnil Kumar Tyagi Personal detailsBornIndiaOccupationProsthodontistAwardsPadma ShriDr. B. C. Roy AwardDelhi State AwardFICCI Health Personality of the YearRotary Vashishat Sewa SammanDr. P. N. Behl Foundation AwardDr. B. C. Shroff Oration AwardCommonwealth Dental Association Oration Award Mahesh Verma is an Indian prosthodontist and the Director and Principal of Maulana Azad Institute of Dental Sciences. H...

 

Motor vehicle Steyr 50, 551936 Steyr 50OverviewManufacturerSteyr-Daimler-Puch AGAlso calledSteyr-BabyProduction1936–1940: 13,000 builtAssemblySteyrBody and chassisClassSubcompact, economy carBody style2-door sedanLayoutFront-engine, rear-wheel-drivePowertrainEngineFlat-four engine 16,2 kW (22 hp)Transmission4-speed manualDimensionsWheelbase2,250 mm (88.6 in)Length3,610–3,670 mm (142.1–144.5 in)Width1,520–1,530 mm (59.8–60.2 in)Curb weight...

Permaisuri Wan RongPermaisuri Xiao Ke MinPermaisuri Dinasti QingPeriodePermaisuri China:1922-1924 Permaisuri Manchukuo:1934-1945PendahuluPermaisuri Xiao Ding JingPenerusTidak ada, dinasti dihapuskanInformasi pribadiKelahiran13 November 1906Kematian20 Juni 1946YanjiNama lengkapGobulo Wan Rong(郭布羅·婉容)Nama anumertaPermaisuri Xiao Ke Min(孝恪愍皇后)AyahRong YuanIbuHengxinPasanganKaisar Xuantong (m.1922) Permaisuri Wanrong (婉容皇后) (13 November 1906 – 20 Juni ...

 

الواجبمعلومات عامةتاريخ الصدور 22 مارس 1948مدة العرض 105 دقيقةاللغة الأصلية العربيةالعرض أبيض وأسود البلد  المملكة المصريةالطاقمالمخرج هنري بركاتالكاتب هنري بركات (قصة وسيناريو)بديع خيري (حوار)البطولة عماد حمديسراج منيرمنىفردوس محمدالتصوير جوليو دى لوكاالتركيب هنري برك...

 

Tanzania is an active and prominent member state of the Non-Aligned Movement since the days of independence of Tanganyika in 1961.[1] In early days of the movement President Julius Nyerere was recognized as one of the leading figures in the movement and among Third World leaders in general.[2][3] His government promoted close adherence to non-alignment principles in which Global North and Global South division was more important than Cold War East–West dichotomy, sup...

Iranian painter (1935–2019) Massoud Arabshahiمسعود عربشاهیMassoud Arabshahi in 2007Born1935Tehran, Pahlavi IranDiedSeptember 16, 2019Tehran, IranAlma materCollege of Decorative Arts, TehranOccupationArtistKnown foroil paintings, bas-relief sculpturesMovementSaqqakhaneh movement Massoud Arabshahi (Persian: مسعود عربشاهی; 1935 – 2019), was an Iranian painter, and bas-relief sculptor.[1][2][3] He was a leading member of the Saqqakhane...

 

Племя сусельцев на карте размещения лужицкосербских племён в VIII—X веках[1][2][3] Сусельцы (сиуслы, польск. Susłowie) — средневековое западнославянское племя, входившее вместе с далеминцами, сорбами, лужичанами, мильчанами, нишанами и другими племенами в сост...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!