Method of moments (electromagnetics)

Simulation of negative refraction from a metasurface at 15 GHz for different angles of incidence. The simulations are performed through the method of moments.

The method of moments (MoM), also known as the moment method and method of weighted residuals,[1] is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the radiation pattern of an antenna. Generally being a frequency-domain method,[a] it involves the projection of an integral equation into a system of linear equations by the application of appropriate boundary conditions. This is done by using discrete meshes as in finite difference and finite element methods, often for the surface. The solutions are represented with the linear combination of pre-defined basis functions; generally, the coefficients of these basis functions are the sought unknowns. Green's functions and Galerkin method play a central role in the method of moments.

For many applications, the method of moments is identical to the boundary element method.[b] It is one of the most common methods in microwave and antenna engineering.

History

Development of boundary element method and other similar methods for different engineering applications is associated with the advent of digital computing in the 1960s.[6] Prior to this, variational methods were applied to engineering problems at microwave frequencies by the time of World War II.[7] While Julian Schwinger and Nathan Marcuvitz have respectively compiled these works into lecture notes and textbooks,[8][9] Victor Rumsey has formulated these methods into the "reaction concept" in 1954.[10] The concept was later shown to be equivalent to the Galerkin method.[7] In the late 1950s, an early version of the method of moments was introduced by Yuen Lo at a course on mathematical methods in electromagnetic theory at University of Illinois.[11]

A scheme and radiation pattern of a log-spiral antenna, designed with a NEC-based modeling software

In the 1960s, early research work on the method was published by Kenneth Mei, Jean van Bladel[12] and Jack Richmond.[13] In the same decade, the systematic theory for the method of moments in electromagnetics was largely formalized by Roger Harrington.[14] While the term "the method of moments" was coined earlier by Leonid Kantorovich and Gleb Akilov for analogous numerical applications,[15] Harrington has adapted the term for the electromagnetic formulation.[7] Harrington published the seminal textbook Field Computation by Moment Methods on the moment method in 1968.[14] The development of the method and its indications in radar and antenna engineering attracted interest; MoM research was subsequently supported United States government. The method was further popularized by the introduction of generalized antenna modeling codes such as Numerical Electromagnetics Code, which was released into public domain by the United States government in the late 1980s.[16][17] In the 1990s, introduction of fast multipole and multilevel fast multipole methods enabled efficient MoM solutions to problems with millions of unknowns.[18][19][20]

Being one of the most common simulation techniques in RF and microwave engineering, the method of moments forms the basis of many commercial design software such as FEKO.[21] Many non-commercial and public domain codes of different sophistications are also available.[22] In addition to its use in electrical engineering, the method of moments has been applied to light scattering[23] and plasmonic problems.[24][25][26]

Background

Basic concepts

An inhomogeneous integral equation can be expressed as: where L denotes a linear operator, g denotes the known forcing function and f denotes the unknown function. f can be approximated by a finite number of basis functions ():

By linearity, substitution of this expression into the equation yields:

We can also define a residual for this expression, which denotes the difference between the actual and the approximate solution:

The aim of the method of moments is to minimize this residual, which can be done by using appropriate weighting or testing functions, hence the name method of weighted residuals.[27] After the determination of a suitable inner product for the problem, the expression then becomes:

Thus, the expression can be represented in the matrix form:

The resulting matrix is often referred as the impedance matrix.[28] The coefficients of the basis functions can be obtained through inverting the matrix.[29] For large matrices with a large number of unknowns, iterative methods such as conjugate gradient method can be used for acceleration.[30] The actual field distributions can be obtained from the coefficients and the associated integrals.[31] The interactions between each basis function in MoM is ensured by Green's function of the system.[32]

Basis and testing functions

Interpolation of function with rooftop basis functions

Different basis functions can be chosen to model the expected behavior of the unknown function in the domain; these functions can either be subsectional or global.[33] Choice of Dirac delta function as basis function is known as point-matching or collocation. This corresponds to enforcing the boundary conditions on discrete points and is often used to obtain approximate solutions when the inner product operation is cumbersome to perform.[34][35] Other subsectional basis functions include pulse, piecewise triangular, piecewise sinusoidal and rooftop functions.[33] Triangular patches, introduced by S. Rao, D. Wilton and A. Glisson in 1982,[36] are known as RWG basis functions and are widely used in MoM.[37] Characteristic basis functions were also introduced to accelerate computation and reduce the matrix equation.[38][39]

The testing and basis functions are often chosen to be the same; this is known as the Galerkin method.[29] Depending on the application and studied structure, the testing and basis functions should be chosen appropriately to ensure convergence and accuracy, as well as to prevent possible high order algebraic singularities.[40]

Integral equations

Depending on the application and sought variables, different integral or integro-differential equations are used in MoM. Radiation and scattering by thin wire structures, such as many types of antennas, can be modeled by specialized equations.[41] For surface problems, common integral equation formulations include electric field integral equation (EFIE), magnetic field integral equation (MFIE)[42] and mixed-potential integral equation (MPIE).[43]

Thin-wire equations

As many antenna structures can be approximated as wires, thin wire equations are of interest in MoM applications. Two commonly used thin-wire equations are Pocklington and Hallén integro-differential equations.[44] Pocklington's equation precedes the computational techniques, having been introduced in 1897 by Henry Cabourn Pocklington.[45] For a linear wire that is centered on the origin and aligned with the z-axis, the equation can be written as: where and denote the total length and thickness, respectively. is the Green's function for free space. The equation can be generalized to different excitation schemes, including magnetic frills.[46]

Hallén integral equation, published by E. Hallén in 1938,[47] can be given as:

This equation, despite being more well-behaved than the Pocklington's equation,[48] is generally restricted to the delta-gap voltage excitations at the antenna feed point, which can be represented as an impressed electric field.[46]

Electric field integral equation (EFIE)

The general form of electric field integral equation (EFIE) can be written as: where is the incident or impressed electric field. is the Green function for Helmholtz equation and represents the wave impedance. The boundary conditions are met at a defined PEC surface. EFIE is a Fredholm integral equation of the first kind.[42]

Magnetic field integral equation (MFIE)

Another commonly used integral equation in MoM is the magnetic field integral equation (MFIE), which can be written as:

MFIE is often formulated to be a Fredholm integral equation of the second kind and is generally well-posed. Nevertheless, the formulation necessitates the use of closed surfaces, which limits its applications.[42]

Other formulations

Many different surface and volume integral formulations for MoM exist. In many cases, EFIEs are converted to mixed potential integral equations (MFIE) through the use of Lorenz gauge condition; this aims to reduce the orders of singularities through the use of magnetic vector and scalar electric potentials.[49][50] In order to bypass the internal resonance problem in dielectric scattering calculations, combined-field integral equation (CFIE) and Poggio—Miller—Chang—Harrington—Wu—Tsai (PMCHWT) formulations are also used.[51] Another approach, the volumetric integral equation, necessitates the discretization of the volume elements and is often computationally expensive.[52]

MoM can also be integrated with physical optics theory[53] and finite element method.[54]

Green's functions

A microstrip scheme. MoM analysis of such layered structures necessitates the derivation of appropriate Green's functions.

Appropriate Green's function for the studied structure must be known to formulate MoM matrices: automatic incorporation of the radiation condition into the Green's function makes MoM particularly useful for radiation and scattering problems. Even though the Green function can be derived in closed form for very simple cases, more complex structures necessitate numerical derivation of these functions.[55]

Full wave analysis of planarly-stratified structures in particular, such as microstrips or patch antennas, necessitate the derivation of Green's functions that are peculiar to these geometries.[50][56] This can be achieved in two different methods. In the first method, known as spectral-domain approach, the inner products and convolution operation for MoM matrix entries are evaluated in the Fourier space with analytically-derived spectral-domain Green's functions through Parseval's theorem.[57][58][59] The other approach is based on the use of spatial-domain Green's functions. This involves the inverse Hankel transform of the spectral-domain Green's function, which is defined on the Sommerfeld integration path. Nevertheless, this integral cannot be evaluated analytically, and its numerical evaluation is often computationally expensive due to the oscillatory kernels and slowly-converging nature of the integral.[60] Common approaches for evaluating these integrals include tail extrapolation approaches such as weighted-averages method.[61]

Other approaches include the approximation of the integral kernel. Following the extraction of quasi-static and surface pole components, these integrals can be approximated as closed-form complex exponentials through Prony's method or generalized pencil-of-function method; thus, the spatial Green's functions can be derived through the use of appropriate identities such as Sommerfeld identity.[62][63][64] This method is known in the computational electromagnetics literature as the discrete complex image method (DCIM), since the Green's function is effectively approximated with a discrete number of image dipoles that are located within a complex distance from the origin.[65] The associated Green's functions are referred as closed-form Green's functions.[63][64] The method has also been extended for cylindrically-layered structures.[66]

Rational-function fitting method,[67][68] as well as its combinations with DCIM,[64] can also be used to approximate closed-form Green's functions. Alternatively, the closed-form Green's function can be evaluated through method of steepest descent.[69] For the periodic structures such as phased arrays and frequency selective surfaces, series acceleration methods such as Kummer's transformation and Ewald summation is often used to accelerate the computation of the periodic Green's function.[70][71]

See also

Notes

  1. ^ While the method is commonly formulated in frequency domain, time domain formulations (MoM-TD) have been reported in the literature.[2][3][4]
  2. ^ For surface-integral formulations, the method of moments and boundary element method are synonymous: the name "method of moments" is particularly used by the electromagnetics community. Nevertheless, certain volumetric formulations are also present in MoM.[5]

References

  1. ^ Davidson 2005, p. 7.
  2. ^ Orlandi, A. (May 1996). "Lightning induced transient voltages in presence of complex structures and nonlinear loads". IEEE Transactions on Electromagnetic Compatibility. 38 (2): 150–155. doi:10.1109/15.494617.
  3. ^ Bretones, A.R.; Mittra, R.; Martin, R. G. (August 1998). "A hybrid technique combining the method of moments in the time domain and FDTD". IEEE Microwave and Guided Wave Letters. 8 (8): 281–283. doi:10.1109/75.704414.
  4. ^ Firouzeh, Z. H.; Moini, R.; Sadeghi, S. H. H.; et al. (April 2011). "A new robust technique for transient analysis of conducting cylinders – TM case". Proceedings of the 5th European Conference on Antennas and Propagation.
  5. ^ Davidson 2005, pp. 7, 197–200.
  6. ^ -D. Cheng, Alexander H.; Cheng, Daisy T. (March 2005). "Heritage and early history of the boundary element method". Engineering Analysis with Boundary Elements. 29 (3): 268–302. doi:10.1016/j.enganabound.2004.12.001.
  7. ^ a b c Harrington, R. (June 1990). "Origin and development of the method of moments for field computation". IEEE Antennas and Propagation Magazine. 32 (3): 31–35. Bibcode:1990IAPM...32...31H. doi:10.1109/74.80522. S2CID 46584485.
  8. ^ Saxon, David S. (1945). Notes on Lectures by Julian Schwinger: Discontinuities in Waveguides. Massachusetts Institute of Technology.
  9. ^ Marcuvitz, Nathan (1951). Waveguide Handbook. McGraw-Hill. ISBN 978-0863410581.
  10. ^ Rumsey, V. H. (June 1954). "Reaction Concept in Electromagnetic Theory". Physical Review. 94 (6): 1483. Bibcode:1954PhRv...94.1483R. doi:10.1103/PhysRev.94.1483.
  11. ^ Chew, Weng Cho; Chuang, Shun-Lien; Jin, Jian-Ming; et al. (August 2002). "In memoriam: Yuen-Tze Lo". IEEE Antennas and Propagation Magazine. 44 (4): 82–83. Bibcode:2002IAPM...44...82.. doi:10.1109/MAP.2002.1043152.
  12. ^ Mei, K.; Van Bladel, J. (March 1963). "Scattering by perfectly-conducting rectangular cylinders". IEEE Transactions on Antennas and Propagation. 11 (2): 185–192. Bibcode:1963ITAP...11..185M. doi:10.1109/TAP.1963.1137996.
  13. ^ Richmond, J. H. (August 1965). "Digital computer solutions of the rigorous equations for scattering problems". Proceedings of the IEEE. 53 (8): 796–804. doi:10.1109/PROC.1965.4057.
  14. ^ a b Wilton, Donald R.; Arvas, Ercument; Butler, Chalmers M.; Mautz, Joseph R. (19 October 2017). "Roger F. Harrington, 1989 IEEE AP-S Distinguished Achievement awardee". 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. pp. 657–658. doi:10.1109/APUSNCURSINRSM.2017.8072371. ISBN 978-1-5386-3284-0. S2CID 1484406.
  15. ^ Medgyesi-Mitschang, L. N.; Putnam, J. M.; Gedera, M. B. (1994). "Generalized the method of moments for three-dimensional penetrable scatterers". Journal of the Optical Society of America A. 11 (4): 1383–1398. Bibcode:1994JOSAA..11.1383M. doi:10.1364/JOSAA.11.001383.
  16. ^ Davidson 2005, p. 8.
  17. ^ Burke, G. J.; Miller, E. K.; Poggio, A. J. (June 2004). "The Numerical Electromagnetics Code (NEC) - a brief history". IEEE Antennas and Propagation Society Symposium, 2004. pp. 2871-2874 Vol.3. doi:10.1109/APS.2004.1331976. ISBN 0-7803-8302-8. OSTI 891397. S2CID 24849672.
  18. ^ Chew et al. 2001, pp. 21–22.
  19. ^ Song, J.; Lu, Cai-Cheng; Chew, Weng Cho (October 1997). "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects". IEEE Transactions on Antennas and Propagation. 45 (10): 1488–1493. Bibcode:1997ITAP...45.1488S. doi:10.1109/8.633855.
  20. ^ Song, J. M.; Lu, C. C.; Chew, W. C.; Lee, S. W. (1998). "Fast Illinois solver code (FISC)". IEEE Antennas and Propagation Magazine. 40 (3): 27–34. doi:10.1109/74.706067.
  21. ^ Davidson 2005, pp. 7–8.
  22. ^ Balanis 2012, p. 732.
  23. ^ Lakhtakia, Akhlesh; Mulholland, George W. (1993). "On Two Numerical Techniques for Light Scattering by Dielectric Agglomerated Structures". Journal of Research of the National Institute of Standards and Technology. 98 (6): 699–716. doi:10.6028/jres.098.046. PMC 4922401. PMID 28053494.
  24. ^ Kern, Andreas M.; Martin, Olivier J. F. (2009). "Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures". Journal of the Optical Society of America A. 26 (4): 732–740. Bibcode:2009JOSAA..26..732K. doi:10.1364/JOSAA.26.000732. PMID 19340246.
  25. ^ Taboada, José M.; Rivero, Javier; Obelleiro, Fernando; Araújo, Marta G.; Landesa, Luis (2011). "Method-of-moments formulation for the analysis of plasmonic nano-optical antennas". Journal of the Optical Society of America A. 28 (7): 1341–1348. Bibcode:2011JOSAA..28.1341T. doi:10.1364/JOSAA.28.001341. PMID 21734731.
  26. ^ Hohenester, Ulrich; Trügler, Andreas (February 2012). "MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles". Computer Physics Communications. 183 (2): 370–381. arXiv:1109.5783. Bibcode:2012CoPhC.183..370H. doi:10.1016/j.cpc.2011.09.009. S2CID 17489164.
  27. ^ Davidson 2005, pp. 139–140.
  28. ^ Yla-Oijala, P.; Taskinen, M. (August 2003). "Calculation of CFIE impedance matrix elements with RWG and n/spl times/RWG functions". IEEE Transactions on Antennas and Propagation. 51 (8): 1837–1846. doi:10.1109/TAP.2003.814745.
  29. ^ a b Harrington 1993, pp. 5–9.
  30. ^ Gibson 2021, pp. 68–77.
  31. ^ Balanis 2012, p. 679.
  32. ^ Gibson 2021, p. 18.
  33. ^ a b Gibson 2021, pp. 43–44.
  34. ^ Harrington 1993, pp. 9–10.
  35. ^ Davidson 2005, p. 123.
  36. ^ Rao, S.; Wilton, D.; Glisson, A. (May 1982). "Electromagnetic scattering by surfaces of arbitrary shape". IEEE Transactions on Antennas and Propagation . 30 (3): 409–418. Bibcode:1982ITAP...30..409R. doi:10.1109/TAP.1982.1142818.
  37. ^ Davidson 2005, pp. 186–187.
  38. ^ Prakash, V. V. S.; Mittra, Raj (2003). "Characteristic basis function method: A new technique for efficient solution of the method of moments matrix equations". Microwave and Optical Technology Letters. 36 (2): 95–100. doi:10.1002/mop.10685. S2CID 121106998.
  39. ^ Maaskant, Rob; Mittra, Raj; Tijhuis, Anton (November 2008). "Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm". IEEE Transactions on Antennas and Propagation. 56 (11): 3440–3451. Bibcode:2008ITAP...56.3440M. doi:10.1109/TAP.2008.2005471. S2CID 8654158.
  40. ^ Aksun, M. I.; Mittra, R. (March 1993). "Choices of expansion and testing functions for the method of moments applied to a class of electromagnetic problems". IEEE Transactions on Microwave Theory and Techniques. 41 (3): 503–509. Bibcode:1993ITMTT..41..503A. doi:10.1109/22.223752. hdl:11693/10851.
  41. ^ Gibson 2021, p. 81.
  42. ^ a b c Davidson 2005, pp. 184–186.
  43. ^ Kinayman & Aksun 2005, p. 311.
  44. ^ Gibson 2021, p. 86-93.
  45. ^ Pocklington, Henry C. (October 25, 1897). "Electrical oscillations in wires". Mathematical Proceedings of the Cambridge Philosophical Society. 9: 324–332. Retrieved 7 December 2024.
  46. ^ a b Balanis 2012, p. 442.
  47. ^ Hallén, E. (1938). "Theoretical investigations into the transmitting and receiving qualities of antennae". Nova Acta Upsal. 4 (11): 1–44.
  48. ^ Gibson 2021, p. 91-93.
  49. ^ Kinayman & Aksun 2005, p. 281.
  50. ^ a b Michalski, K. A.; Mosig, J. R. (March 1997). "Multilayered Media Green's Functions in Integral Equation Formulations". IEEE Transactions on Antennas and Propagation. 45 (3): 508–519. Bibcode:1997ITAP...45..508M. doi:10.1109/8.558666.
  51. ^ Chew et al. 2001, pp. 15–18.
  52. ^ Davidson 2005, pp. 197–199.
  53. ^ Davidson 2005, pp. 202–208.
  54. ^ Ilic, Milan M.; Djordjevic, Miroslav; Ilic, Andjelija Z.; Notaros, Branislav M. (May 2009). "Higher Order Hybrid FEM-MoM Technique for Analysis of Antennas and Scatterers". IEEE Transactions on Antennas and Propagation. 57 (5): 1452–1460. Bibcode:2009ITAP...57.1452I. doi:10.1109/TAP.2009.2016725. S2CID 31273380.
  55. ^ Davidson 2005, p. 8-10.
  56. ^ Kinayman & Aksun 2005, p. 278.
  57. ^ Itoh, T.; Mittra, R. (July 1973). "Spectral-Domain Approach for Calculating the Dispersion Characteristics of Microstrip Lines". IEEE Transactions on Microwave Theory and Techniques. 21 (7): 496–499. doi:10.1109/TMTT.1973.1128044.
  58. ^ Itoh, T. (July 1980). "Spectral Domain Immitance Approach for Dispersion Characteristics of Generalized Printed Transmission Lines". IEEE Transactions on Microwave Theory and Techniques. 28 (7): 733–736. doi:10.1109/TMTT.1980.1130158.
  59. ^ Das, N. K.; Pozar, D. M. (March 1987). "A Generalized Spectral-Domain Green's Function for Multilayer Dielectric Substrates with Application to Multilayer Transmission Lines". IEEE Transactions on Microwave Theory and Techniques. 35 (3): 326–335. doi:10.1109/TMTT.1987.1133646.
  60. ^ Kinayman & Aksun 2005, p. 274.
  61. ^ Michalski, Krzysztof A.; Mosig, Juan R. (2016). "Efficient computation of Sommerfeld integral tails – methods and algorithms". Journal of Electromagnetic Waves and Applications. 30 (3): 281–317. doi:10.1080/09205071.2015.1129915.
  62. ^ Chow, Y. L.; Yang, J. J.; Fang, D. G.; Howard, G. E. (March 1991). "A closed-form spatial Green's function for the thick microstrip substrate". IEEE Transactions on Microwave Theory and Techniques. 39 (3): 588–592. Bibcode:1991ITMTT..39..588C. doi:10.1109/22.75309.
  63. ^ a b Aksun, M. I. (May 1996). "A robust approach for the derivation of closed-form Green's functions". IEEE Transactions on Microwave Theory and Techniques. 44 (5): 651–658. Bibcode:1996ITMTT..44..651A. doi:10.1109/22.493917. hdl:11693/10779.
  64. ^ a b c Alparslan, A.; Aksun, M. I.; Michalski, K. A. (February 2010). "Closed-Form Green's Functions in Planar Layered Media for All Ranges and Materials". IEEE Transactions on Microwave Theory and Techniques. 58 (3): 602–613. Bibcode:2010ITMTT..58..602A. doi:10.1109/TMTT.2010.2040354. S2CID 15018213.
  65. ^ Ling, Feng; Jin, Jian-Ming (October 2000). "Discrete complex image method for Green's functions of general multilayer media". IEEE Microwave and Guided Wave Letters. 10 (10): 400–402. doi:10.1109/75.877225.
  66. ^ Tokgoz, C.; Dural, G. (January 2000). "Closed-form Green's functions for cylindrically stratified media". IEEE Transactions on Microwave Theory and Techniques. 48 (1): 40–49. Bibcode:2000ITMTT..48...40T. doi:10.1109/22.817470.
  67. ^ Okhmatovski, V. I.; Cangellaris, A. C. (February 2004). "Evaluation of layered media Green's functions via rational function fitting". IEEE Microwave and Wireless Components Letters. 14 (1): 22–24. doi:10.1109/LMWC.2003.821492. S2CID 12104884.
  68. ^ Kourkoulos, V. N.; Cangellaris, A. C. (May 2006). "Accurate approximation of Green's functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves". IEEE Transactions on Antennas and Propagation. 54 (5): 1568–1576. Bibcode:2006ITAP...54.1568K. doi:10.1109/TAP.2006.874329. S2CID 24691332.
  69. ^ Cui, Tie Jun; Chew, Weng Cho (March 1999). "Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects". IEEE Transactions on Geoscience and Remote Sensing. 37 (2): 887–900. Bibcode:1999ITGRS..37..887C. doi:10.1109/36.752208.
  70. ^ Capolino, F. Capolino; Wilton, D. R.; Johnson, W. A. (September 2005). "Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method". IEEE Transactions on Antennas and Propagation . 53 (9): 2977–2984. Bibcode:2005ITAP...53.2977C. doi:10.1109/TAP.2005.854556. S2CID 32502117.
  71. ^ Kinayman, Noyan; Aksun, M. I. (1995). "Comparative study of acceleration techniques for integrals and series in electromagnetic problems". Radio Science. 30 (6): 1713–1722. doi:10.1029/95RS02060. hdl:11693/48408.
Bibliography

Read other articles:

Kios buah di Barcelona, Spanyol. Penjaga buah di pasar Rwanda Buah adalah hasil reproduksi antara putik dan serbuk sari pada tumbuhan.[1] Buah termasuk organ pada tumbuhan berbunga yang merupakan perkembangan lanjutan dari bakal buah (ovarium). Buah biasanya membungkus dan melindungi biji. Aneka rupa dan bentuk buah tidak terlepas kaitannya dengan fungsi utama buah, yakni sebagai pemencar biji tumbuhan. Buah dalam lingkup pertanian (hortikultura) atau pangan biasanya disebut sebagai b...

 

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Awan senna – berita · surat kabar · buku · cendekiawan · JSTOR artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapi...

 

 

Forces armées de la république de Corée대한민국 국군 (大韓民國國軍) Fondation 15 août 1948 Branches Armée de terre de la république de Corée Force aérienne de la république de Corée Marine de la république de Corée Quartier-général Séoul Commandement Commandant en chef Yoon Seok-youl Ministre de la Défense Lee Jong-sup Chef d'état-major Général Jeong Kyeong-doo Main-d'œuvre Âges militaires 19 - 35 ans Disponibles au service militaire 18 763 677 hommes Att...

Sang DewiSutradara Dwi Ilalang Produser Adrianus Yoga Chand Parwez Servia Ditulis olehDwi IlalangRepublik TebeMasree RuliatJeremias NyangoenSkenarioDwi IlalangRepublik TebeMasree RuliatJeremias NyangoenCeritaDwi IlalangPemeranVolland HumonggioSabai MorscheckDonny AlamsyahCathy SharonDendy SubangilChoky SitohangDolly MartinRiki TrifarisaRia IrawanWidi MuliaTiti DJYoga PratamaPenata musikTya SubiaktoSinematograferRegina AninditaPenyuntingTim DiasPerusahaanproduksiBig Daddy ProductionDistr...

 

 

Karelisch (karjala) Gesprochen in Russland (Republik Karelien, Oblast Twer) Sprecher ca. 30.000 LinguistischeKlassifikation Uralische Sprachen Finno-ugrisch Ostseefinnisch Karelisch Offizieller Status Anerkannte Minderheiten-/Regionalsprache in Karelien, Russland[1] Sprachcodes ISO 639-1 – ISO 639-2 krl ISO 639-3 krl Verbreitung der karelischen Sprachen vor dem Zweiten Weltkrieg: 1a) Nordkarelisch, 1b) Südkarelisch, 2) Olonetzisch Die karelische Sprache (kar...

 

 

Detalle de la Veleta de Söderala (siglos X-XI). La Veleta de Söderala es una pieza antigua que fue usada como veleta hacia 1700 en la iglesia de Söderala, en Hälsingland, Suecia. Originalmente era una pieza de cobre, posteriormente dorada artificialmente, que posiblemente fue usada en la proa de un drakkar o una nave similar de los vikingos entre 980 y 1080. Ricamente decorada con formas animales, se ha clasificado como una obra de estilo Ringerike. Estos estandartes se fabricaban en cobr...

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Abril de 2020) Teuto-brasileiros de São Paulo Notáveis teuto-brasileiros de São Paulo:Elano Blumer · Juliana Schalch · Didi Wagner · Arthur Friedenreich · Vera Holtz ·...

 

 

Ця стаття містить інформацію, яку треба перевірити на наявність недостовірних фактів і хибних даних. Будь ласка, ознайомтеся з відповідним обговоренням та допоможіть виправити недоліки. (листопад 2020) Антон Станіславович МалиновськийНародився 2 серпня 1940(1940-08-02)Скаржи...

 

 

Nagorno-Karabakh women in an Azerbaijani family portrait, 1906. Part of a series onWomen in society Society Women's history (legal rights) Woman Animal advocacy Business Female entrepreneurs Gender representation on corporate boards of directors Economic development Explorers and travelers Education Feminism Womyn Government Conservatives in the US Heads of state or government Legislators Queen regnant List Health Journalism Law Law enforcement Military Mother Nobel Prize laureates Pirac...

American television soap opera For the Portuguese telenovela, see Santa Bárbara (TV series). Santa BarbaraGenreSoap operaCreated byBridget DobsonJerome DobsonStarringSeries castTheme music composerJoe HarnellCountry of originUnited States of AmericaOriginal languageEnglishNo. of seasons9No. of episodes2,137[1]ProductionExecutive producerSee hereProduction locationsNBC StudiosBurbank, CaliforniaRunning time60 minutesProduction companiesDobson Productions New World TelevisionOriginal r...

 

 

Public school in Texas, United States Cypress Ridge High SchoolLocation7900 N. Eldridge ParkwayHouston, TX 77041United StatesCoordinates29°53′33″N 95°36′18″W / 29.8925°N 95.6049°W / 29.8925; -95.6049InformationTypePublic high schoolEstablished2002School districtCypress-Fairbanks Independent School DistrictPrincipalDr. Abe LozanoFaculty249.31 FTE (2018-19)[1]Grades9-12Enrollment3,088 (2018-19)[1]Student to teacher ratio12.39 (2018-19)[1&#...

 

 

Coordenadas: 16° 23' 58.02 S 48° 54' 26.54 O Grupo Caoa Grupo CaoaLogotipo do Grupo Caoa Razão social Caoa Motor do Brasil Ltda. Tipo empresa de capital fechado Atividade indústria automobilística Fundação 1979 (44 anos) Fundador(es) Carlos Alberto de Oliveira Andrade Sede São Paulo[1] Presidente Carlos Alberto de Oliveira Andrade Filho Produtos automóveis Subsidiárias Caoa Montadora Caoa Seminovos Website oficial caoa.com.br O Grupo Caoa é o distribuidor d...

Glossoepiglottic foldsSagittal section of the larynx and upper part of the trachea.DetailsIdentifiersLatinPlica glossoepiglotticaTA98A05.3.01.021 A05.3.01.022TA22877, 2878FMA55038Anatomical terminology[edit on Wikidata] The anterior or lingual surface of the epiglottis is curved forward, and covered on its upper, free part by mucous membrane which is reflected on to the sides and root of the tongue, forming a median and two lateral glossoepiglottic folds; the lateral folds are partly atta...

 

 

Island in French Polynesia AkamaruView of Akamaru IslandAkamaruGeographyLocationPacific OceanCoordinates23°10′52″S 134°54′56″W / 23.18111°S 134.91556°W / -23.18111; -134.91556ArchipelagoTuamotusArea2.1 km2 (0.81 sq mi)Length2.8 km (1.74 mi)Width1.6 km (0.99 mi)Highest elevation247 m (810 ft)Highest point(unnamed)AdministrationFranceOverseas collectivityFrench PolynesiaAdministrative subdivisionTuamotusC...

 

 

Television series Below Deck MediterraneanGenreRealityCountry of originUnited StatesOriginal languageEnglishNo. of seasons8No. of episodes121 (list of episodes)ProductionExecutive producers Mark Cronin Courtland Cox Nadine Rajabi Running time42 minutesProduction company51 Minds EntertainmentOriginal releaseNetworkBravoReleaseMay 3, 2016 (2016-05-03) –presentRelated Below Deck Below Deck Sailing Yacht Below Deck Down Under Below Deck Adventure Below Deck Mediterranean is an America...

Southrail stop in Makati, Philippines This article is about the PNR station. For the LRT station, see EDSA station (LRT). For MRT stations in EDSA, see MRT Line 3 (Metro Manila). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: EDSA station PNR – news · newspapers · books · scholar · JSTOR (February 2021...

 

 

  此条目的主題是日本編劇。关于日本足球選手,請見「佐藤大 (足球選手)」。 本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目過於依赖第一手来源。 (2017年11月21日)请補充第二手及第三手來源,以改善这篇条目。 此條目使用外部链接的方式可能不符合维基百科的方针或指引,或致使內文成為链接農場。 (2022年3月18日)請協助清理過度...

 

 

Species of pine tree Not to be confused with Japanese umbrella-pine or Swiss stone pine. Stone pine Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Gymnospermae Division: Pinophyta Class: Pinopsida Order: Pinales Family: Pinaceae Genus: Pinus Subgenus: P. subg. Pinus Section: P. sect. Pinus Subsection: Pinus subsect. Pinaster Species: P. pinea Binomial name Pinus pineaL. Distribution map The stone pine, b...

Election 1897 Massachusetts gubernatorial election ← 1896 November 2, 1897 (1897-11-02) 1898 →   Nominee Roger Wolcott George Fred Williams William Everett Party Republican Democratic National Democratic Popular vote 165,095 79,552 13,897 Percentage 61.95% 29.49% 5.14% County resultsWolcott:      50–60%      60–70%      70–80%      80–90% G...

 

 

Wego Pte Ltd.IndustriPariwisataDidirikan2005; 19 tahun lalu (2005) di SingapuraWilayah operasiInternasionalTokohkunciRoss Veitch[1] (CEO & Pendiri)Craig Hewett(Pendiri)Mamoun Hmedan[2]Dean Wicks[3]ProdukPencarian Tiket Penerbangan, Hotel, dan WisataKaryawan200Situs webwww.wego.com Wego, sebelumnya dikenal sebagai Bezurk,[4][5][6] adalah sebuah mesin pencari (metasearch) pariwisata yang didirikan pada tahun 2005 di Singapura. Perusahaan ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!