Meropenem

Meropenem
Clinical data
Trade namesMerrem, others
AHFS/Drugs.comMonograph
License data
Pregnancy
category
  • AU: B2
Routes of
administration
Intravenous
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability100%
Protein bindingApproximately 2%
Elimination half-life1 hour
ExcretionKidney
Identifiers
  • (4R,5S,6S)-3-(((3S,5S)-5-(Dimethylcarbamoyl)pyrrolidin-3-yl)thio)-6-((R)-1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
PDB ligand
CompTox Dashboard (EPA)
ECHA InfoCard100.169.299 Edit this at Wikidata
Chemical and physical data
FormulaC17H25N3O5S
Molar mass383.46 g·mol−1
3D model (JSmol)
  • O=C3N2\C(=C(\S[C@H]1C[C@@H](C(=O)N(C)C)NC1)[C@H](C)[C@@H]2[C@H]3[C@H](O)C)C(=O)O
  • InChI=1S/C17H25N3O5S/c1-7-12-11(8(2)21)16(23)20(12)13(17(24)25)14(7)26-9-5-10(18-6-9)15(22)19(3)4/h7-12,18,21H,5-6H2,1-4H3,(H,24,25)/t7-,8-,9+,10+,11-,12-/m1/s1 checkY
  • Key:DMJNNHOOLUXYBV-PQTSNVLCSA-N checkY
  (verify)

Meropenem, sold under the brand name Merrem among others, is an intravenous carbapenem antibiotic used to treat a variety of bacterial infections.[3] Some of these include meningitis, intra-abdominal infection, pneumonia, sepsis, and anthrax.[3]

Common side effects include nausea, diarrhea, constipation, headache, rash, and pain at the site of injection.[3] Serious side effects include Clostridioides difficile infection, seizures, and allergic reactions including anaphylaxis.[3] Those who are allergic to other β-lactam antibiotics are more likely to be allergic to meropenem as well.[3] Use in pregnancy appears to be safe.[3] It is in the carbapenem family of medications.[3] Meropenem usually results in bacterial death through blocking their ability to make a cell wall.[3] It is resistant to breakdown by many kinds of β-lactamase enzymes, produced by bacteria to protect themselves from antibiotics.[4][5][6]

Meropenem was patented in 1983.[7] It was approved for medical use in the United States in 1996.[3] It is on the World Health Organization's List of Essential Medicines.[8][9] The World Health Organization classifies meropenem as critically important for human medicine.[10]

Medical uses

The spectrum of action includes many Gram-positive and Gram-negative bacteria (including Pseudomonas) and anaerobic bacteria. The overall spectrum is similar to that of imipenem, although meropenem is more active against Enterobacteriaceae and less active against Gram-positive bacteria. Meropenem is effective against bacteria producing extended-spectrum β-lactamases but may be more susceptible to hydrolysis by metallo-β-lactamases produced by bacteria.[11] β-lactamases are enzymes that bacteria produce to hydrolyze β-lactam antibiotics, breaking the β-lactam ring and rendering these antibiotics ineffective. This mechanism helps bacteria resist the effects of antibiotics like penicillins, cephalosporins, and carbapenems, making treatment more challenging.[12][13][14] While β-lactam ring in meropenem is more accessible to water molecules than in the other β-lactam antibiotics, that facilitates the hydrolysis process and faster degradation of meropenem's antibacterial properties in aqueous solutions, it is more resistant to degradation by β-lactamase enzymes produced by bacteria than the other β-lactam antibiotics.[15][4]

Meropenem is frequently given in the treatment of febrile neutropenia. This condition frequently occurs in patients with hematological malignancies and cancer patients receiving anticancer drugs that suppress bone marrow formation. It is approved for complicated skin and skin structure infections, complicated intra-abdominal infections and bacterial meningitis.[4][16][17][18]

Meropenem is effective in treating bacterial pneumonia, including hospital-acquired pneumonia.[19]

In 2017, the U.S. Food and Drug Administration (FDA) granted approval for the combination of meropenem and vaborbactam to treat adults with complicated urinary tract infections.[20]

Administration

Meropenem is administered intravenously as an aqueous solution. Meropenem is stored in vials as white crystalline powder (containing meropenem as the trihydrate blended with anhydrous sodium carbonate).[21][22][23] For intravenous administration, if pure meropenem powder is used (rather than the powder blended with sodium carbonate), meropenem is dissolved in 5% monobasic potassium phosphate solution, since meropenem is soluble in 5% monobasic potassium phosphate solution and only sparingly soluble in water[22] (5.63 mg/mL).[24][25][26] For intravenous bolus administration, injection vials (that contain meropenem blended with sodium carbonate) are reconstituted with sterile water for injection.[21][22][24]

Reconstituted (dissolved) meropenem degrades over time.[27][28][29][30] The degradation may be associated with color change of the solution, typical for a hydrolysis of the amide bond of the β-lactam ring as seen with most β-lactam antibiotics,[31] while particularly for meropenem the color is changing from colorless or pale yellow to vivid yellowish.[32] Upon reconstitution, the meropenem infusion solution, prepared with 0.9% sodium chloride, exhibits both chemical and physical stability for a duration of 3 hours at a temperature up to 25°C. If refrigerated (2–8°C), the stability extends to 24 hours. However, when the product is reconstituted in a 5% dextrose solution, it is used immediately to ensure its efficacy.[27] The degradation of meropenem in a water-based solution is affected by factors such as pH, temperature, initial concentration, and the specific type of infusion solution used.[32] Meropenem solutions should not be frozen.[33][34]

There is a bit of a paradox with meropenem that the amide bond in the β-lactam ring of meropenem makes it resistant to many β-lactamases (penicillinases), which are enzymes produced by bacteria that can break down penicillin and related antibiotics such as meropenem.[35][36] This resistance is due to the stability of the β-lactam ring in meropenem, which is less susceptible to hydrolysis by these enzymes.[37] However, meropenem is not stable in the presence of water.[38][39] It can undergo hydrolysis in aqueous solutions, which can reduce its effectiveness.[40] This means that while meropenem is designed to resist bacterial enzymes, it can still be broken down by water, which is a bit ironic.[41] That's why meropenem requires frequent or prolonged slow administration to supply new drug to the bloodstream to replace what was hydrolyzed by the water component of blood.[42][43]

Meropenem is administered every 8 hours.[24]

Dosing must be adjusted for altered kidney function and for haemofiltration.[44]

Studies describe application of meropenem therapeutic drug monitoring (measurements of drug levels in the bloodstream at specific intervals) for optimal application.[45][46]

As with other β-lactams antibiotics, the effectiveness of treatment depends on the amount of time during the dosing interval that the meropenem concentration is above the minimum inhibitory concentration for the bacteria causing the infection.[47] For β-lactams, including meropenem, prolonged intravenous administration is associated with lower mortality compared to bolus intravenous infusion, especially in severe infections or those caused by less sensitive bacteria, such as Pseudomonas aeruginosa.[47][48]

Meropenem exhibits poor permeability across the gut and low oral bioavailability because of its hydrophilic properties, which inhibit its passive diffusion across the intestinal epithelium.[49] The challenges related to research of oral delivery of meropenem are related to high susceptibility of meropenem to degradation through hydrolysis of the amide bond in the β-lactam ring, even at relatively low temperatures and humidity.[49] This instability can result in the loss of meropenem's antibacterial activity. Besides that, meropenem is unstable in the acidic environment of the stomach, leading to extensive degradation and loss of the drug after oral administration.[49] In addition, intestinal efflux (secretory) transport can pump the drug back into the gut: efflux transporters, particularly P-glycoprotein (P-gp), present in the gastrointestinal tract can actively pump meropenem back into the gut lumen, limiting its absorption and reducing oral bioavailability; in the attempts of oral administration bacteria can develop resistance to meropenem by enhancing the active efflux of the antibiotic through efflux transporters, such as the MexAB-OprM tripartite efflux system in Pseudomonas aeruginosa.[49] That's why meropenem is administered intravenously.[49][50]

There is insufficient data regarding the administration of meropenem during breastfeeding. However, it has been observed that, in general, the concentration of this β-lactam antibiotic in breast milk is relatively low, therefore, β-lactam antibiotics are not anticipated to induce detrimental effects in infants who are breastfed. Nonetheless, there have been sporadic reports of disturbances in the gastrointestinal flora of the infant, manifesting as diarrhea or oral candidiasis (thrush), associated with the use of β-lactam antibiotics, however, these potential side effects have not been thoroughly investigated specifically in the context of meropenem use, therefore, the safety profile of meropenem in breastfeeding mothers and their infants is unknown.[51]

Although meropenem is not approved for intramuscular or subcutaneous routes of administration in humans, there were studies that evaluated the drug bioavailability in cats and reported bioavailability of 99.69% for intramuscular route and 96.52 % for subcutaneous route of administration; these studies also compared elimination half-lives for intravenous, intramuscular or subcutaneous routes of administration in cats and reported duration of 1.35, 2.10 and 2.26 hours, respectively.[52] There was also a small study on local tolerance of meropenem intramuscular administration in humans, and it was reported as generally good.[52][53][54]

Side effects

Among antibiotic drugs, meropenem is relatively safe.[4][46] The most common adverse effects are diarrhea (4.8%), nausea and vomiting (3.6%), injection-site inflammation (2.4%), headache (2.3%), rash (1.9%) and thrombophlebitis (0.9%).[55] Many of these adverse effects were observed in severely ill individuals already taking many medications including vancomycin.[56][57] Meropenem has a reduced potential for seizures in comparison with imipenem. Several cases of severe hypokalemia have been reported.[58][59]

Interactions

Meropenem rapidly reduces serum concentrations of valproic acid. As a result, people who use valproic acid for epilepsy are at increased risk of seizures during treatment with meropenem. In situations where the use of meropenem cannot be avoided, prescription of an additional anticonvulsant should be considered.[60]

Pharmacology

Mechanism of action

Meropenem is bactericidal except against Listeria monocytogenes, where it is bacteriostatic. It inhibits bacterial cell wall synthesis like other β-lactam antibiotics. In contrast to other β-lactams, it is highly resistant to degradation by β-lactamases or cephalosporinases. In general, resistance arises due to mutations in penicillin-binding proteins, production of metallo-β-lactamases, or resistance to diffusion across the bacterial outer membrane.[55] Unlike imipenem, it is stable to dehydropeptidase-1, so can be given without cilastatin.[61]

In 2016, a synthetic peptide-conjugated PMO (PPMO) was found to inhibit the expression of New Delhi metallo-beta-lactamase 1, an enzyme that many drug-resistant bacteria use to destroy carbapenems.[62][63]

Research directions

Nebulized meropenem (inhaled route) is researched, but is not approved, for prevention of bronchiectasis exacerbation.[64]

Society and culture

Meropenem vial

Trade names

Trade names
Country Name Maker
India UNOMERO Scutonix Lifesciences, Bombay
India Inzapenum Dream India
Aurobindo Pharma
Penmer Biocon
Meronir Nirlife
Merowin Strides Acrolab
Aktimer Aktimas Biopharmaceuticals
Neopenem Neomed
Mexopen Samarth life sciences
Meropenia SYZA Health Sciences LLP
Ivpenem Medicorp Pharmaceuticals
Merofit
Lykapiper Lyka Labs
Winmero Parabolic Drugs
Bangladesh
Meroject Eskayef Pharmaceuticals Ltd.
Merocon Beacon Pharmaceuticals
Indonesia Merofen Kalbe
Brazil Zylpen Aspen Pharma
Japan, Korea Meropen
Australia Merem
Taiwan Mepem
Germany Meronem
Nigeria Zironem Lyn-Edge Pharmaceuticals
Ukraine[65] Meropenem Lekhim-Kharkiv
Panlaktam (Panlaktam) "Darnytsia"
Mepenam Kyivmedpreparat
Merobicide Borshchahiv HFZ
US Meronem AstraZeneca
Indonesia Merosan Sanbe Farma
Indonesia Merobat Interbat
Zwipen
Carbonem
Ronem Opsonin Pharma, BD
Neopenem
Merocon Continental
Carnem Laderly Biotech
Penro Bosch
Meroza German Remedies
Merotrol Lupin)
Meromer Orchid Chemicals
Mepenox BioChimico
Meromax Eurofarma
Ropen Macter
mirage adwic
Meropex Apex Pharma Ltd.
Merostarkyl Hefny Pharma Group[66]

References

  1. ^ "MEROPENEM-AFT (AFT Pharmaceuticals Pty Ltd)". Archived from the original on September 15, 2024. Retrieved September 15, 2024.
  2. ^ "Regulatory Decision Summary for Meropenem for Injection USP and Sodium Chloride Injection USP". Drug and Health Products Portal. January 4, 2024. Archived from the original on September 7, 2024. Retrieved April 2, 2024.
  3. ^ a b c d e f g h i "Meropenem". The American Society of Health-System Pharmacists. Archived from the original on January 20, 2011. Retrieved December 8, 2017.
  4. ^ a b c d Mohr Iii JF (2008). "Update on the Efficacy and Tolerability of Meropenem in the Treatment of Serious Bacterial Infections". Clinical Infectious Diseases. 47: S41–S51. doi:10.1086/590065. PMID 18713049. Archived from the original on February 27, 2024. Retrieved February 23, 2024.
  5. ^ Michelow IC, McCracken GH (2009). "Antibacterial Therapeutic Agents". Feigin and Cherry's Textbook of Pediatric Infectious Diseases. pp. 3178–3227. doi:10.1016/B978-1-4160-4044-6.50253-3. ISBN 978-1-4160-4044-6. As with other β-lactam antibiotics, meropenem is bactericidal against susceptible bacteria because it inhibits bacterial cell wall synthesis. The trans configuration of the hydroxyethyl side chain and hydrogen atoms protect the parent β-lactam structure from inactivation by the most common β-lactamases, including almost all Bush groups 1 and 2 (Amber classes A, C, and D) β-lactamase–producing organisms, including those that produce ESBLs (Citrobacter, Enterobacter, E. coli, Klebsiella spp., and P. mirabilis) or AmpC β-lactamases (Citrobacter, Enterobacter, Pseudomonas, and Serratia)
  6. ^ Ikenoue C, Matsui M, Inamine Y, Yoneoka D, Sugai M, Suzuki S (February 2024). "The importance of meropenem resistance, rather than imipenem resistance, in defining carbapenem-resistant Enterobacterales for public health surveillance: an analysis of national population-based surveillance". BMC Infect Dis. 24 (1): 209. doi:10.1186/s12879-024-09107-4. PMC 10870673. PMID 38360618.
  7. ^ Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 497. ISBN 978-3-527-60749-5. Archived from the original on February 27, 2024. Retrieved September 20, 2020.
  8. ^ World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  9. ^ World Health Organization (2021). World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization. hdl:10665/345533. WHO/MHP/HPS/EML/2021.02.
  10. ^ World Health Organization (2019). Critically important antimicrobials for human medicine (6th revision ed.). Geneva: World Health Organization. hdl:10665/312266. ISBN 978-92-4-151552-8.
  11. ^ AHFS Drug Information (2006 ed.). American Society of Health-System Pharmacists. 2006.
  12. ^ Bush K (October 2018). "Past and Present Perspectives on β-Lactamases". Antimicrob Agents Chemother. 62 (10). doi:10.1128/AAC.01076-18. PMC 6153792. PMID 30061284.
  13. ^ Mora-Ochomogo M, Lohans CT (October 2021). "β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates". RSC Med Chem. 12 (10): 1623–1639. doi:10.1039/d1md00200g. PMC 8528271. PMID 34778765.
  14. ^ Bush K (2010). "Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections". Crit Care. 14 (3): 224. doi:10.1186/cc8892. PMC 2911681. PMID 20594363.
  15. ^ Franceschini N, Segatore B, Perilli M, Vessillier S, Franchino L, Amicosante G (2002). "Meropenem stability to β-lactamase hydrolysis and comparative in vitro activity against several β-lactamase-producing Gram-negative strains". Journal of Antimicrobial Chemotherapy. 49 (2): 395–398. doi:10.1093/jac/49.2.395. PMID 11815587. Archived from the original on February 27, 2024. Retrieved February 23, 2024.
  16. ^ "Meropenem". MedlinePlus.gov. September 16, 2016. Archived from the original on March 19, 2023. Retrieved March 19, 2023.
  17. ^ "Merrem® IV (meropenem for injection)". Pediatric Postmarketing Pharmacovigilance Review. Food and Drug Administration. November 17, 2017. Archived from the original on March 5, 2021. Retrieved February 23, 2024.
  18. ^ "Approval package for meropenem for injection" (PDF). Archived (PDF) from the original on April 12, 2021. Retrieved February 23, 2024.
  19. ^ "Meropenem Monograph for Professionals". Archived from the original on January 20, 2011. Retrieved December 9, 2017.
  20. ^ "FDA approves new antibacterial drug". U.S. Food and Drug Administration (FDA) (Press release). March 24, 2020. Archived from the original on April 23, 2019. Retrieved March 5, 2022.Public Domain This article incorporates text from this source, which is in the public domain.
  21. ^ a b "Meropenem". ASHP Injectable Drug Information. 2021. p. 1020. doi:10.37573/9781585286850.251. ISBN 978-1-58528-658-4.
  22. ^ a b c "DailyMed - MEROPENEM injection, powder, for solution". Archived from the original on June 20, 2024. Retrieved November 2, 2024.
  23. ^ Baldwin CM, Lyseng-Williamson KA, Keam SJ (2008). "Meropenem". Drugs. 68 (6): 803–838. doi:10.2165/00003495-200868060-00006. PMID 18416587. Archived from the original on February 27, 2024. Retrieved February 23, 2024.
  24. ^ a b c "NDA 50-706/S-022 MERREM I.V." (PDF). Archived (PDF) from the original on February 21, 2024. Retrieved February 21, 2024.
  25. ^ "Meropenem trihydrate | DrugBank Online". Archived from the original on February 23, 2024. Retrieved February 23, 2024.
  26. ^ "Meropenem". Archived from the original on February 23, 2024. Retrieved February 23, 2024.
  27. ^ a b "Meropenem 1g powder for solution for injection/Infusion - Summary of Product Characteristics (SMPC) - (Emc)". Archived from the original on February 22, 2024. Retrieved February 22, 2024.
  28. ^ Wolie ZT, Roberts JA, Gilchrist M, McCarthy K, Sime FB (2024). "Current practices and challenges of outpatient parenteral antimicrobial therapy: A narrative review". The Journal of Antimicrobial Chemotherapy. 79 (9): 2083–2102. doi:10.1093/jac/dkae177. PMC 11368434. PMID 38842523.
  29. ^ Ortega-Balleza JL, Vázquez-Jiménez LK, Ortiz-Pérez E, Avalos-Navarro G, Paz-González AD, Lara-Ramírez EE, et al. (August 2024). "Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors". Molecules. 29 (16): 3944. doi:10.3390/molecules29163944. PMC 11356879. PMID 39203022.
  30. ^ Fawaz S, Barton S, Whitney L, Swinden J, Nabhani-Gebara S (2019). "Stability of Meropenem After Reconstitution for Administration by Prolonged Infusion". Hospital Pharmacy. 54 (3): 190–196. doi:10.1177/0018578718779009. PMC 6535930. PMID 31205331. Archived from the original on February 27, 2024. Retrieved February 22, 2024.
  31. ^ Palzkill T (January 2013). "Metallo-β-lactamase structure and function". Ann N Y Acad Sci. 1277 (1): 91–104. Bibcode:2013NYASA1277...91P. doi:10.1111/j.1749-6632.2012.06796.x. PMC 3970115. PMID 23163348.
  32. ^ a b Tomasello C, Leggieri A, Cavalli R, Di Perri G, D'Avolio A (April 2015). "In Vitro Stabilifighty Evaluation of Different Pharmaceutical Products Containing Meropenem". Hosp Pharm. 50 (4): 296–303. doi:10.1310/hpj5004-296. PMC 4589882. PMID 26448659.
  33. ^ "Meropenem: Package Insert". Archived from the original on February 23, 2024. Retrieved February 23, 2024.
  34. ^ Foy F, Luna G, Martinez J, Nizich Z, Seet J, Lie K, et al. (2019). "An investigation of the stability of meropenem in elastomeric infusion devices". Drug Des Devel Ther. 13: 2655–2665. doi:10.2147/DDDT.S212052. PMC 6682764. PMID 31447546.
  35. ^ Saikia S, Chetia P (September 2024). "Antibiotics: From Mechanism of Action to Resistance and Beyond". Indian J Microbiol. 64 (3): 821–845. doi:10.1007/s12088-024-01285-8. PMC 11399512. PMID 39282166.
  36. ^ Munita JM, Arias CA (2016). "Mechanisms of Antibiotic Resistance". Microbiology Spectrum. 4 (2). doi:10.1128/microbiolspec.vmbf-0016-2015. PMC 4888801. PMID 27227291.
  37. ^ Bahr G, González LJ, Vila AJ (July 2021). "Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design". Chem Rev. 121 (13): 7957–8094. doi:10.1021/acs.chemrev.1c00138. PMC 9062786. PMID 34129337.
  38. ^ Wilamowski M, Sherrell DA, Kim Y, Lavens A, Henning RW, Lazarski K, et al. (November 2022). "Time-resolved β-lactam cleavage by L1 metallo-β-lactamase". Nat Commun. 13 (1): 7379. Bibcode:2022NatCo..13.7379W. doi:10.1038/s41467-022-35029-3. PMC 9712583. PMID 36450742.
  39. ^ Palermo G, Spinello A, Saha A, Magistrato A (May 2021). "Frontiers of metal-coordinating drug design". Expert Opin Drug Discov. 16 (5): 497–511. doi:10.1080/17460441.2021.1851188. PMC 8058448. PMID 33874825.
  40. ^ Celis-Llamoca K, Serna-Galvis EA, Torres-Palma RA, Nieto-Juárez JI (2022). "High-frequency ultrasound processes as alternative methods for degrading meropenem antibiotic in water". MethodsX. 9: 101835. doi:10.1016/j.mex.2022.101835. PMC 9471477. PMID 36117679.
  41. ^ Tioni MF, Llarrull LI, Poeylaut-Palena AA, Martí MA, Saggu M, Periyannan GR, et al. (November 2008). "Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase". J Am Chem Soc. 130 (47): 15852–63. doi:10.1021/ja801169j. PMC 2645938. PMID 18980308.
  42. ^ "Archived copy" (PDF). Archived (PDF) from the original on June 3, 2024. Retrieved October 20, 2024.{{cite web}}: CS1 maint: archived copy as title (link)
  43. ^ Nicolau DP (2008). "Pharmacokinetic and Pharmacodynamic Properties of Meropenem". Clinical Infectious Diseases. 47: S32–S40. doi:10.1086/590064. PMID 18713048.
  44. ^ Bilgrami I, Roberts JA, Wallis SC, Thomas J, Davis J, Fowler S, et al. (July 2010). "Meropenem dosing in critically ill patients with sepsis receiving high-volume continuous venovenous hemofiltration". Antimicrobial Agents and Chemotherapy. 54 (7): 2974–2978. doi:10.1128/AAC.01582-09. PMC 2897321. PMID 20479205.
  45. ^ Steffens NA, Zimmermann ES, Nichelle SM, Brucker N (June 2021). "Meropenem use and therapeutic drug monitoring in clinical practice: a literature review". J Clin Pharm Ther. 46 (3): 610–621. doi:10.1111/jcpt.13369. PMID 33533509.
  46. ^ a b Adamiszak A, Bartkowska-Śniatkowska A, Grześkowiak E, Bienert A (2024). "Interest in antibiotic pharmacokinetic modelling in the context of optimising dosing and reducing resistance: bibliometric analysis". Anaesthesiol Intensive Ther. 56 (2): 129–140. doi:10.5114/ait.2024.141332. PMC 11284584. PMID 39166504.
  47. ^ a b Yu Z, Pang X, Wu X, Shan C, Jiang S (2018). "Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: A meta-analysis". PLOS ONE. 13 (7): e0201667. Bibcode:2018PLoSO..1301667Y. doi:10.1371/journal.pone.0201667. PMC 6066326. PMID 30059536.
  48. ^ Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME (January 2018). "Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials". The Lancet. Infectious Diseases. 18 (1): 108–120. doi:10.1016/S1473-3099(17)30615-1. PMID 29102324.
  49. ^ a b c d e Raza A, Ngieng SC, Sime FB, Cabot PJ, Roberts JA, Popat A, et al. (February 2021). "Oral meropenem for superbugs: challenges and opportunities". Drug Discov Today. 26 (2): 551–560. doi:10.1016/j.drudis.2020.11.004. PMID 33197621. S2CID 226988098.
  50. ^ Monti G, Bradić N, Marzaroli M, Konkayev A, Fominskiy E, Kotani Y, et al. (2023). "Continuous vs Intermittent Meropenem Administration in Critically Ill Patients with Sepsis". JAMA. 330 (2): 141–151. doi:10.1001/jama.2023.10598. PMC 10276329. PMID 37326473.
  51. ^ "Meropenem". National Institute of Child Health and Human Development. 2006. PMID 30000076. Archived from the original on February 21, 2024. Retrieved February 21, 2024.
  52. ^ a b Tallarigo C, Comunale L, Baldassarre R, Poletti G (September 1995). "[Multicenter comparative study of meropenem vs. imipenem in the intramuscular treatment of hospital infections of the urinary tract]". Minerva Urol Nefrol (in Italian). 47 (3): 147–56. PMID 8815553.
  53. ^ Meaney-Delman D, Bartlett LA, Gravett MG, Jamieson DJ (April 2015). "Oral and intramuscular treatment options for early postpartum endometritis in low-resource settings: a systematic review". Obstet Gynecol. 125 (4): 789–800. doi:10.1097/AOG.0000000000000732. PMID 25751198.
  54. ^ Lizasoaín M, Noriega AR (September 1997). "[Tolerance and safety of carbapenems: the use of meropenem]". Enferm Infecc Microbiol Clin (in European Spanish). 15 (Suppl 1): 73–7. PMID 9410074.
  55. ^ a b Mosby's Drug Consult 2006 (16 ed.). Mosby, Inc. 2006.
  56. ^ Erden M, Gulcan E, Bilen A, Bilen Y, Uyanik A, Keles M (March 7, 2013). "Pancytopenýa and Sepsýs due to Meropenem: A Case Report" (PDF). Tropical Journal of Pharmaceutical Research. 12 (1). doi:10.4314/tjpr.v12i1.21. Archived (PDF) from the original on November 13, 2013. Retrieved April 20, 2013.
  57. ^ "Meropenem side effects - from FDA reports". eHealthMe. Archived from the original on November 5, 2013. Retrieved April 20, 2013.
  58. ^ Margolin L (2004). "Impaired rehabilitation secondary to muscle weakness induced by meropenem". Clinical Drug Investigation. 24 (1): 61–62. doi:10.2165/00044011-200424010-00008. PMID 17516692. S2CID 44484294.
  59. ^ Bharti R, Gombar S, Khanna AK (2010). "Meropenem in critical care - uncovering the truths behind weaning failure". Journal of Anaesthesiology Clinical Pharmacology. 26 (1): 99–101. doi:10.4103/0970-9185.75131. S2CID 54127805. Archived from the original on February 21, 2015. Retrieved December 15, 2013.
  60. ^ Al-Quteimat O, Laila A (June 2020). "Valproate Interaction With Carbapenems: Review and Recommendations". Hospital Pharmacy. 55 (3): 181–187. doi:10.1177/0018578719831974. PMC 7243600. PMID 32508355.
  61. ^ Wiseman LR, Wagstaff AJ, Brogden RN, Bryson HM (1995). "Meropenem". Drugs. 50 (1): 73–101. doi:10.2165/00003495-199550010-00007. PMID 7588092.
  62. ^ "New molecule knocks out superbugs' immunity to antibiotics". newatlas.com. January 20, 2017. Archived from the original on January 22, 2017. Retrieved January 25, 2017.
  63. ^ Sully EK, Geller BL, Li L, Moody CM, Bailey SM, Moore AL, et al. (March 2017). "Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo". The Journal of Antimicrobial Chemotherapy. 72 (3): 782–790. doi:10.1093/jac/dkw476. PMC 5890718. PMID 27999041.
  64. ^ Nadeem I, Ingle T, Ur Rasool M, Mahdi N, Ul Munamm SA, Rabiei B, et al. (2023). "P114 Nebulised meropenem for prevention of bronchiectasis exacerbation". 'It's not easy being green' – Suppurative lung diseases. Vol. 78. pp. A175.1–A175. doi:10.1136/thorax-2023-BTSabstracts.266. Archived from the original on February 21, 2024. Retrieved February 21, 2024.
  65. ^ "Меропенем (Meropenemum)". compendium.com.ua (in Ukrainian). Compendium. Archived from the original on May 20, 2022. Retrieved May 21, 2022.
  66. ^ "Hefny Pharma Group". hefnypharmagroup.info. Archived from the original on May 23, 2018. Retrieved May 22, 2018.

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!