Menzerath's law

Menzerath's law, also known as the Menzerath–Altmann law (named after Paul Menzerath and Gabriel Altmann), is a linguistic law according to which the increase of the size of a linguistic construct results in a decrease of the size of its constituents, and vice versa.[1][2]

For example, the longer a sentence (measured in terms of the number of clauses), the shorter the clauses (measured in terms of the number of words), or: the longer a word (in syllables or morphs), the shorter the syllables or morphs in sounds.

History

In the 19th century, Eduard Sievers observed that vowels in short words are pronounced longer than the same vowels in long words.[3][4]: 122  Menzerath & de Oleza (1928)[5] expanded this observation to state that, as the number of syllables in words increases, the syllables themselves become shorter on average.

From this, the following hypothesis developed:

The larger the whole, the smaller its parts.

In particular, for linguistics:

The larger a linguistic construct, the smaller its constituents.

In the early 1980s, Altmann, Heups,[6] and Köhler[7] demonstrated using quantitative methods that this postulate can also be applied to larger constructs of natural language: the larger the sentence, the smaller the individual clauses, etc. A prerequisite for such relationships is that a relationship between units (here: sentence) and their direct constituents (here: clause) is examined.[8][9][1]: Übersichten 

Mathematics

According to Altmann (1980),[8] it can be mathematically stated as:

where:

  • is the constituent size (e.g. syllable length);
  • is the size of the linguistic construct that is being inspected (e.g. number of syllables per word);
  • , , are positive parameters.

The law can be explained by assuming that linguistic segments contain information about their structure (besides the information that needs to be communicated).[7] The assumption that the length of the structure information is independent of the length of the other content of the segment yields the alternative formula that was also successfully empirically tested.[10]

Examples

Linguistics

Gerlach (1982)[11] checked a German dictionary[12] with about 15,000 entries:

1 2391 4.53 4.33
2 6343 3.25 3.37
3 4989 2.93 2.91
4 1159 2.78 2.62
5 112 2.65 2.42
6 13 2.58 2.26

Where is the number of morphs per word, is the number of words in the dictionary with length ; is the observed average length of morphs (number of phonemes per morph); is the prediction according to where are fited to data. The F-test has .

As another example, the simplest form of Menzerath's law, , holds for the duration of vowels in Hungarian words:[13]

Word length (syllables per word) Sound duration (sec/100)
using the vowel ā as an example: observed
Sound duration (sec/100)
using the vowel ā as an example: predicted
1 27.2 27.64
2 24.2 23.18
3 20.9 20.91
4 19.0 19.43
5 18.2 18.36

More examples are on the German Wikipedia pages on phoneme duration, syllable duration, word length, clause length, and sentence length.

This law also seems to hold true for at least a subclass of Japanese Kanji characters.[14]

Non-linguistics

Beyond quantitative linguistics, Menzerath's law can be discussed in any multi-level complex systems. Given three levels, is the number of middle-level units contained in a high-level unit, is the averaged number of low-level units contained in middle-level units, Menzerath's law claims a negative correlation between and .

Menzerath's law is shown to be true for both the base-exon-gene levels in the human genome,[15] and base-chromosome-genome levels in genomes from a collection of species.[16] In addition, Menzerath's law was shown to accurately predict the distribution of protein lengths in terms of amino acid number in the proteome of ten organisms.[17]

Furthermore, studies have shown that the social behavior of baboon groups also corresponds to Menzerath's Law: the larger the entire group, the smaller the subordinate social groups.[1]: 99 ff 

In 2016, a research group at the University of Michigan found that the calls of geladas obey Menzerath's law, observing that calls are abbreviated when used in longer sequences.[18][19]

See also

References

  1. ^ a b c Gabriel Altmann, Michael H. Schwibbe (1989). Das Menzerathsche Gesetz in informationsverarbeitenden Systemen. Hildesheim/Zürich/New York: Olms. ISBN 3-487-09144-5.
  2. ^ Luděk Hřebíček (1995). Text Levels. Language Constructs, Constituents and the Menzerath-Altmann Law. Wissenschaftlicher Verlag Trier. ISBN 3-88476-179-X.
  3. ^ Karl-Heinz Best: Eduard Sievers (1850–1932). In: Glottometrics 18, 2009, ISSN 1617-8351, S. 87–91. (PDF Full text).
  4. ^ Eduard Sievers: Grundzüge der Lautphysiologie zur Einführung in das Studium der Lautlehre der indogermanischen Sprachen. Breitkopf & Härtel, Leipzig 1876.
  5. ^ Menzerath, Paul, & de Oleza, Joseph M. (1928). Spanische Lautdauer. Eine experimentelle Untersuchung. Berlin/ Leipzig: de Gruyter.
  6. ^ Heups, Gabriela. Untersuchungen zum Verhältnis von Satzlänge zu Clauselänge am Beispiel deutscher Texte verschiedener Textklassen. 1980.
  7. ^ a b Reinhard Köhler (1984). "Zur Interpretation des Menzerathschen Gesetzes". Glottometrika. 6: 177–183.
  8. ^ a b Gabriel Altmann (1980). "Prolegomena to Menzerath's law". Glottometrika. 2: 1–10.
  9. ^ "Hierarchic relations - Laws in Quantitative Linguistics". 2015-12-29. Archived from the original on 2015-12-29. Retrieved 2024-09-24.
  10. ^ Jiří Milička (2014). "Menzerath's Law: The whole is greater than the sum of its parts". Journal of Quantitative Linguistics. 21 (2): 85–99. doi:10.1080/09296174.2014.882187. S2CID 205625169.
  11. ^ Rainer Gerlach: Zur Überprüfung des Menzerath'schen Gesetzes im Bereich der Morphologie. In: Werner Lehfeldt, Udo Strauss (eds.): Glottometrika 4. Brockmeyer, Bochum 1982, ISBN 3-88339-250-2, S. 95–102.
  12. ^ Gerhard Wahrig (ed.): dtv-Wörterbuch der deutschen Sprache. Deutscher Taschenbuch Verlag, Munich 1978, ISBN 3-423-03136-0.
  13. ^ Ernst A. Meyer, Zoltán Gombocz: Zur Phonetik der ungarischen Sprache. Berlings Buchdruckerei, Uppsala 1909, page 20; Karl-Heinz Best: Gesetzmäßigkeiten der Lautdauer. In: Glottotheory 1, 2008, page 6.
  14. ^ Claudia Prün: Validity of Menzerath-Altmann's Law: Graphic Representation of Language, Information Processing Systems and Synergetic Linguistics. In: Journal of Quantitative Linguistics 1, 1994, S. 148–155.
  15. ^ Wentian Li (2012). "Menzerath's law at the gene-exon level in the human genome". Complexity. 17 (4): 49–53. Bibcode:2012Cmplx..17d..49L. doi:10.1002/cplx.20398.
  16. ^ Ramon Ferrer-I-Cancho, Núria Forns (2009). "The self-organization of genomes". Complexity. 15 (5): 34–36. doi:10.1002/cplx.20296. hdl:2117/180111.
  17. ^ Eroglu, S (10 Jan 2014). "Language-like behavior of protein length distribution in proteomes". Complexity. 20 (2): 12–21. Bibcode:2014Cmplx..20b..12E. doi:10.1002/cplx.21498.
  18. ^ Martin, Cassie. "Gelada monkeys know their linguistic math". Science News. Retrieved 12 August 2024.
  19. ^ Gustison, Morgan (April 18, 2016). "Gelada vocal sequences follow Menzerath's linguistic law". Proceedings of the National Academy of Sciences. 113 (19). doi:10.1073/pnas.1522072113. hdl:2117/89435.

Read other articles:

Construcciones y Auxiliar de Ferrocarriles (CAF) Тип Публичная компания Листинг на бирже BMAD: CAF Основание 1917 Расположение Штаб-квартира: Испания: Беасайн Ключевые фигуры José María Baztarrica Garijo (CEO) Отрасль Машиностроение Продукция Проектирование, производство и обслуживание оборудования для рел...

 

Bài viết vềĐiện từ học Điện Từ học Lịch sử Giáo trình Tĩnh điện Chất cách điện Chất dẫn điện Cảm ứng tĩnh điện Điện ma sát Điện thông Điện thế Điện trường Điện tích Định luật Coulomb Định luật Gauss Độ điện thẩm Mômen lưỡng cực điện Mật độ phân cực Mật độ điện tích Phóng tĩnh điện Thế năng điện Tĩnh từ Định luật Ampère Định luật Biot–Savart Định lu...

 

Bầu trời ở khắp mọi nơi Đạo diễnJosephine DeckerSản xuất Josephine Decker Denise Di Novi Margaret French Isaac Allison Rose Carter Tác giảJandy NelsonDựa trênThe Sky Is Everywherecủa Jandy NelsonDiễn viên Grace Kaufman Pico Alexander Jacques Colimon Cherry Jones Jason Segel Âm nhạcCaroline ShawQuay phimAva BerkofskyDựng phimLaura ZempelHãng sản xuấtDi Novi Pictures Phát hànhA24 Apple StudiosCông chiếu 11 tháng 2 năm 2022 (2022-02-11) Đ

History of Inuit clothing Sealskin woman's parka discovered at Qilakitsoq in 1972, dated to c. 1475. Archaeological evidence indicates that the use of Inuit clothing extends far back into prehistory, with significant evidence to indicate that its basic structure has changed little since. The clothing systems of all Arctic peoples (encompassing the Inuit, Iñupiat, and the indigenous peoples of Siberia and the Russian Far East) are similar, and evidence in the form of tools and carved fi...

 

American fashion doll franchise by Mattel Not to be confused with Monster High (1989 film). Monster HighLogo introduced in 2016Created byGarrett SanderOriginal workToysOwnerMattelYears2010–presentPrint publicationsBook(s)See list of booksFilms and televisionFilm(s)17 (list of films)Television seriesMonster HighWeb seriesMonster HighAudioSoundtrack(s)20MiscellaneousSpin-off(s)Ever After HighEnchantimalsOfficial websitemattel.com/monster-high Monster High is an American multimedia-supported f...

 

Irregular soldiers in Habsburg Croatia Uskok redirects here. For the Croatian law enforcement institution, see USKOK. Uskoci redirects here. For other uses, see Uskoci (disambiguation). Uskoks / UskociStitch with Uskok-ships chasing a large ship.Museum of Fortress Nehaj in Senj, Croatia.LeadersNumerous; notable leaders include: Petar Kružić (Klis) Ivan Lenković (Senj) Dates of operation1520s–1618HeadquartersMobile, two most famous: Klis Fortress in Klis (origin) Nehaj Fortress in Senj (l...

1985 single by BananaramaDo Not DisturbSingle by Bananaramafrom the album True Confessions B-sideGhostReleased12 August 1985 (UK)[1]RecordedApril 1985GenrePopLength3:25LabelLondon RecordsSongwriter(s)Jolley & SwainProducer(s)Jolley & SwainBananarama singles chronology The Wild Life (1984) Do Not Disturb (1985) Venus (1986) Do Not Disturb is a song recorded by English girl group Bananarama. It was written and produced by the production duo of Steve Jolley and Tony Swain. Origin...

 

Abiu Klasifikasi ilmiah Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Magnoliophyta Kelas: Magnoliopsida Subkelas: Dilleniidae Ordo: Ericales Famili: Sapotaceae Subfamili: Chrysophylloideae Genus: Pouteria Spesies: P. caimito Nama binomial Pouteria caimitoRadlk. Sinonim[1] Guapeba glazioveana Pierre Krugella hartii Pierre Labatia pedunculata Willd. Labatia tovarensis Engl. Lucuma glazioviana Pierre ex Glaz. Lucuma hartii Hemsl. Lucuma huallagae Standl. ex L.O. Williams Luc...

 

Men's high jumpat the Games of the XXXI OlympiadDerek Drouin (2013)VenueOlympic StadiumDates14–16 August 2016Competitors44 from 28 nationsWinning height2.38Medalists Derek Drouin  Canada Mutaz Essa Barshim  Qatar Bohdan Bondarenko  Ukraine← 20122020 → Official Video Highlights Athletics at the2016 Summer OlympicsQualificationTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdles...

硝酸イソソルビド(しょうさんイソソルビド)は狭心症の治療薬として用いられる硝酸エステル製剤である。一般名として、ヒドロキシ基の1つが硝酸エステルとなっている誘導体を含む製剤である一硝酸イソソルビドと2つとも硝酸エステル化されている二硝酸イソソルビドがあり、単に一般名で硝酸イソソルビドといった場合は後者(ビス硝酸エステル)を指す。 前...

 

Gambaran planet karbon. Permukaannya gelap dan kemerahan karena endapan hidrokarbon. Planet karbon merupakan sejenis planet teoretis yang mengandung lebih banyak karbon daripada oksigen.[1] Karbon adalah unsur paling melimpah keempat di alam semesta menurut massa setelah hidrogen, helium, dan oksigen. Marc Kuchner dan Sara Seager menciptakan istilah planet karbon pada tahun 2005 dan menyelidiki planet seperti ini mengikuti gagasan dari Katharina Lodders yang menyatakan bahwa Jupiter t...

 

1999 film Dirty Linen(Panni sporchi)Film posterDirected byMario MonicelliWritten bySuso Cecchi D'AmicoMario MonicelliMasolino D'AmicoMargherita D'AmicoProduced byGiovanni Di ClementeStarringPaolo BonacelliMichele PlacidoMariangela MelatoGigi ProiettiCinematographyStefano ColettaMusic byLuis Enriquez BacalovDistributed byC.D.I.Release date 29 January 1999 (1999-01-29) Running time110 minutesCountryItalyLanguageItalian Dirty Linen (Italian: Panni sporchi) is a 1999 Italian comedy...

Russian swimmer Semen MakovichMakovich in 2016Personal informationFull nameSemen Vladimirovich MakovichBorn (1995-07-13) 13 July 1995 (age 28)SportSportSwimming Medal record Military World Games 2019 Wuhan 4×100 m freestyle Semen Vladimirovich Makovich (Russian: Семён Владимирович Макович; born 13 July 1995) is a Russian swimmer. He competed in the men's 200 metre individual medley event at the 2016 Summer Olympics.[1] References ^ Semen Makovich. Ri...

 

2008 American filmJack RioTheatrical release posterDirected byGregori J. MartinWritten by Gregori J. Martin Matthew Borlenghi Starring Matthew Borlenghi Mary Kate Schellhardt Sean Kanan Nadia Bjorlin Distributed byBlack Hat ProductionsRelease date June 13, 2008 (2008-06-13) CountryUnited StatesLanguageEnglish Jack Rio is a 2008 American thriller film directed by Gregori J. Martin.[1] The film is based on a short film written and directed by the film's lead actor Matt Bo...

 

Bipa Hyeongdonggeom. Bipa Hyeongdonggeom atau Belati Perunggu Berbentuk Mandolin adalah artefak perunggu yang ditemukan di wilayah Manchuria, Liaoning dan Semenanjung Korea.[1] Belati ini dipercaya diproduksi dan dipergunakan oleh suku Yemaek, yang dianggap sejarawan sebagai kelompok pendiri kerajaan Gojoseon.[1] Bentuk Bipa Hyeongdonggeom berbeda dengan jenis belati yang ditemukan di Cina, yang membuktikan perbedaan antara kebudayaan perunggu Korea dengan Cina.[1] Ref...

The main characters from series 2: Naz Mehmet (Emaa Hussen), Sol Levi (Tosin Cole), Asher Levi (Heshima Thompson) and Stevie Dickinson (Amanda Fairbank-Hynes). EastEnders: E20 is a British Internet teen soap opera, available on BBC Online, the official website of the BBC. The series is a spin-off from the long-running soap opera EastEnders and was created by Diederick Santer. The series is set in Walford, a fictional borough of London, and follows the stories of teenagers who arrive and resid...

 

2010 South Korean filmThe Last GodfatherFilm posterDirected byShim Hyung-raeWritten byShim Hyung-raeProduced byChoi DoohoChoi Sung-hoLee Sang-mooCinematographyMark IrwinEdited byJeff FreemanMusic byJohn LissauerProductioncompanyYounggu ArtDistributed byCJ EntertainmentRelease date October 29, 2010 (2010-10-29) (South Korea) Running time103 minutesCountrySouth KoreaLanguageEnglish The Last Godfather (Korean: 라스트 갓파더; RR: Laseuteu Gatpadeo) i...

 

Royal Norwegian MintIndustryMetalworkingFounded1686; 337 years ago (1686)HeadquartersKongsberg, NorwayArea servedNorwayProductscoinsOwnerSamlerhusetMint of FinlandWebsitemyntverket.no (in Norwegian) The Royal Norwegian Mint (Norwegian: Den Kongelige Mynt) is a mint in Norway responsible for producing coins of the Norwegian krone. Founded in 1686 as part of Kongsberg Silverworks, the mint was taken over by the Central Bank of Norway in 1962 and later incorporated in 2001 into...

Seigneurs du TempsDames du Temps Personnage de fiction apparaissant dansDoctor Who. Costume d'apparat du Seigneur Président Borusa dans l'épisode Arc of Infinity. Origine Gallifrey Activité Voyageurs temporels Séries Doctor Who Première apparition An Unearthly Child modifier  Les Seigneurs du Temps (Time Lords), au féminin Dames du Temps (Time Ladies), sont une espèce extraterrestre fictive de la série télévisée de science-fiction britannique Doctor Who, dont le personnage pri...

 

Election in Mississippi Main article: 1876 United States presidential election 1876 United States presidential election in Mississippi ← 1872 November 7, 1876 1880 → Turnout19.90% 4.26 pp[1]   Nominee Samuel J. Tilden Rutherford B. Hayes Party Democratic Republican Home state New York Ohio Running mate Thomas A. Hendricks William A. Wheeler Electoral vote 8 0 Popular vote 112,173 52,603 Percentage 68.08% 31.92% County Results Tilden  ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!