Mating pool

Visual representation of the position of the mating pool during the genetic algorithm process.

A mating pool is a concept used in evolutionary computation, which refers to a family of algorithms used to solve optimization and search problems.[1]

The mating pool is formed by candidate solutions that the selection operators deem to have the highest fitness in the current population. Solutions that are included in the mating pool are referred to as parents. Individual solutions can be repeatedly included in the mating pool, with individuals of higher fitness values having a higher chance of being included multiple times. Crossover operators are then applied to the parents, resulting in recombination of genes recognized as superior. Lastly, random changes in the genes are introduced through mutation operators, increasing the genetic variation in the gene pool. Those two operators improve the chance of creating new, superior solutions. A new generation of solutions is thereby created, the children, who will constitute the next population. Depending on the selection method, the total number of parents in the mating pool can be different to the size of the initial population, resulting in a new population that’s smaller. To continue the algorithm with an equally sized population, random individuals from the old populations can be chosen and added to the new population.[1][2][3]

At this point, the fitness value of the new solutions is evaluated. If the termination conditions are fulfilled, processes come to an end. Otherwise, they are repeated.

The repetition of the steps result in candidate solutions that evolve towards the most optimal solution over time. The genes will become increasingly uniform towards the most optimal gene, a process called convergence. If 95% of the population share the same version of a gene, the gene has converged. When all the individual fitness values have reached the value of the best individual, i.e. all the genes have converged, population convergence is achieved.[1][4]

Mating pool creation

Parental selection methods used in the creation of a mating pool.

Several methods can be applied to create a mating pool. All of these processes involve the selective breeding of a particular number of individuals within a population. There are multiple criteria that can be employed to determine which individuals make it into the mating pool and which are left behind. The selection methods can be split into three general types: fitness proportionate selection, ordinal based selection and threshold based selection.

Fitness proportionate selection

In the case of fitness proportionate selection, random individuals are selected to enter the pool. However, the ones with a higher level of fitness are more likely to be picked and therefore have a greater chance of passing on their features to the next generation.[1][4]

One of the techniques used in this type of parental selection is the roulette wheel selection. This approach divides a hypothetical circular wheel into different slots, the size of which is equal to the fitness values of each potential candidate. Afterwards, the wheel is rotated and a fixed point determines which individual gets picked. The greater the fitness value of an individual, the higher the probability of being chosen as a parent by the random spin of the wheel. Alternatively, stochastic universal sampling can be implemented. This selection method is also based on the rotation of a spinning wheel. However, in this case there is more than one fixed point and as a result all of the mating pool members will be selected simultaneously.[4][5]

Ordinal based selection

The ordinal based selection methods include the tournament and ranking selection. Tournament selection involves the random selection of individuals of a population and the subsequent comparison of their fitness levels. The winners of these “tournaments” are the ones with the highest values and will be put into the mating pool as parents. In ranking selection all the individuals are sorted based on their fitness values. Then, the selection of the parents is made according to the rank of the candidates. Every individual has a chance of being chosen, but higher ranked ones are favored[4][5]

Threshold based selection

The last type of selection method is referred to as the threshold based method. This includes the truncation selection method, which sorts individuals based on their phenotypic values on a specific trait and later selects the proportion of them that are within a certain threshold as parents.[6]

References

  1. ^ a b c d Regupathi, R. “Cost Optimization Of Multistoried Rc Framed Structure Using Hybrid Genetic Algorithm.” International Research Journal of Engineering and Technology (IRJET), vol. 04, no. 07, July 2017, p. 890., www.irjet.net/archives/V4/i7/IRJET-V4I7211.pdf.
  2. ^ Schatten, Alexander (19 June 2002). "Genetic Algorithms".
  3. ^ Mitchell, Melanie; Taylor, Charles E. (November 1999). "Evolutionary Computation: An Overview". Annual Review of Ecology and Systematics. 30 (1): 593–616. doi:10.1146/annurev.ecolsys.30.1.593. ISSN 0066-4162.
  4. ^ a b c d Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms: Part 1, fundamentals. University computing, 15(2), 56-69.
  5. ^ a b Gandhi, Sonali (4 September 2020). "A Comparative Analysis of Selection Scheme" (PDF). International Journal of Soft Computing and Engineering (IJSCE). 2: 131–134.
  6. ^ Hartmut, Pohlheim. "Evolutionary Algorithms 3 Selection". Geatbx. Retrieved 15 September 2020.

Read other articles:

Pour les articles homonymes, voir El Gallo et Gómez. Cet article est une ébauche concernant une personnalité espagnole. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. El GalloBiographieNaissance 18 août 1847SévilleDécès 2 août 1897 (à 49 ans)GelvesNom de naissance Fernando Gómez GarcíaPseudonyme El GalloNationalité espagnoleActivités Matador, toreroConjoint Gabriela Ortega Feria (d) (à partir ...

 

Untuk satuan yang dinamakan menurut tokoh ini, lihat gauss. Gauss beralih ke halaman ini. Untuk Gauss (disambiguation), lihat Gauss (disambiguasi). Carl Friedrich GaussCarl Friedrich Gauß (1777–1855), dilukis oleh Christian Albrecht JensenLahirJohann Carl Friedrich Gauss(1777-04-30)30 April 1777Brunswick, Kerajaan Brunswick-Wolfenbüttel, Kekaisaran Romawi SuciMeninggal23 Februari 1855(1855-02-23) (umur 77)Göttingen, Kerajaan HanoverTempat tinggalKerajaan HanoverKebangsaanJermanAlmam...

 

У Вікіпедії є статті про інші значення цього терміна: Картер. Діксі Картерангл. Dixie Carter Ім'я при народженні Діксі Вірджинія КартерНародилася 25 травня 1939(1939-05-25)[1][2][…]Маклеморсвілл, Керролл, Теннессі, СШАПомерла 10 квітня 2010(2010-04-10)[4][1][…] (70 років)Г'юстонрак м�...

 

仮面ライダーシリーズ 仮面ライダー鎧武/ガイム > 仮面ライダー×仮面ライダー ドライブ&鎧武 MOVIE大戦フルスロットル 仮面ライダードライブ > 仮面ライダー×仮面ライダー ドライブ&鎧武 MOVIE大戦フルスロットル MOVIE大戦シリーズ > 仮面ライダー×仮面ライダー ドライブ&鎧武 MOVIE大戦フルスロットル 仮面ライダー×仮面ライダードライブ&鎧...

 

Mapa han Arabya Saudi nga nagpapakita ha syudad han Tabuk An Tabuk amo an kapital nga syudad ha lalawigan han Tabuk ha nasod han Arabya Saudi.  Usa ka turók ini nga barasahon. Dako it imo maibubulig ha Wikipedia pinaagi han pagparabong hini. An Wikimedia Commons mayda media nga nahahanungod han: Tabuk

 

Пам'ятник воїнам-інтернаціоналістам Пам'ятник воїнам-інтернаціоналістам (22 жовтня 2009 року) 48°56′26″ пн. ш. 38°30′55″ сх. д. / 48.9406861° пн. ш. 38.5153000° сх. д. / 48.9406861; 38.5153000Координати: 48°56′26″ пн. ш. 38°30′55″ сх. д. / 48.9406861° пн. ш. ...

 

Puritan clergyman (1663–1728) The ReverendCotton MatherFRSMather, c. 1700BornFebruary 12, 1663Boston, Massachusetts Bay ColonyDiedFebruary 13, 1728 (aged 65)Boston, Province of Massachusetts BayResting placeCopp's Hill Burying Ground, BostonEducationHarvard College (AB, 1678; MA, 1681)Occupation(s)Minister, writerParent(s)Increase Mather and Maria CottonRelativesJohn Cotton (maternal grandfather) Richard Mather (paternal grandfather)Signature Cotton Mather FRS (/ˈmæðər/; February ...

 

Calapan City (Lungsod ng Calapan)KotaKesibukan di J.P. Rizal Avenue, barangay San Vicente, Calapan CityPeta menunjukkan lokasi Calapan CityNegara FilipinaRegionMIMAROPA (Region IV-B)ProvinsiOriental MindoroBarangay62Pemerintahan • Wali kotaSalvador LeachonLuas • Total215,10 km2 (8,310 sq mi)Populasi (2007) • Total116.976 • Kepadatan5,4/km2 (14/sq mi)Zona waktuUTC+8 (PHT)Situs webSitus web resmi Calapan City adalah k...

 

Ніко Ковач Ніко Ковач Особисті дані Народження 15 жовтня 1971(1971-10-15) (52 роки)   Західний Берлін, ФРН Зріст 174 см Вага 70 кг Громадянство  Хорватія Позиція півзахисник Інформація про клуб Поточний клуб завершив кар'єру Юнацькі клуби 1987—1989 «Рапід-Веддінг» Професіональні...

 

Silverstone CircuitHome of British Motor Racing[1]Sirkuit SilverstoneLokasiSilverstone, Northamptonshire (sebagian) dan Buckinghamshire (sebagian), InggrisZona waktuGMTKoordinat52°4′43″N 1°1′1″W / 52.07861°N 1.01694°W / 52.07861; -1.01694Koordinat: 52°4′43″N 1°1′1″W / 52.07861°N 1.01694°W / 52.07861; -1.01694ArsitekPopulousAcara besarFIA Formula SatuGrand Prix InggrisFIM MotoGPGrand Prix Sepeda Motor InggrisFIM Ke...

 

Music of Italy Timeline General topics Opera houses Music conservatories Terminology Genres Classical (Opera) Pop Rock (Hardcore · New Wave · Progressive rock) Disco House Dance Folk Hip hop Jazz Specific forms Gregorian chant Media and performance Music awards Sanremo Music Festival (festival and awards) Festival di Napoli (festival and awards) Tenco Plates and Awards Lunezia Awards Music Awards Coca Cola Summer Festival (festival and awards) MTV Awards Festivalbar (festival and awards) Te...

 

MV Kulleet operating as the Albion Ferry in June 2009 Class overview NameK class (K barge) OperatorsBC Ferries Built1972–1975 and 2006 refit Completed6 Active4 Retired2 The K-class ferries (often referred to as K-barges due to their hull type and size) are a group of similarly designed ferries operated by both BC Ferries and TransLink in British Columbia, Canada. With the exception of MV Pune'luxutth, all of the listed K-class vessels were built for service in British Columbia's Ministry of...

 

For the notwithstanding clause in the Canadian constitution, see Section 33 of the Canadian Charter of Rights and Freedoms. Notwithstanding: stories from an English Village First editionAuthorLouis de BernièresCover artistRob RyanCountryUnited KingdomLanguageEnglishPublisherHarvill SeckerPublication date2009Media typePrintPages275ISBN1-846-55330-X Notwithstanding is a short story collection by British author Louis de Bernières. Published in 2009, it was inspired by Wormley, the Su...

 

Mid-engine sports car produced by the Italian automobile manufacturer Ferrari Motor vehicle Ferrari 488OverviewManufacturerFerrariProduction2015–2019AssemblyItaly: MaranelloDesignerFerrari Styling Centre under Flavio Manzoni[1]Body and chassisClassSports car (S)Body style2-door berlinetta2-door retractable hard-top convertibleLayoutRear mid-engine, rear-wheel-driveRelatedFerrari SF90 StradalePowertrainEngine3902 cc F154 CB twin-turbo V8[2]Power output488 GTB &...

 

1971 American filmThey Call It MurderDirected byWalter GraumanWritten bySam RolfeBased onThe D.A. Draws a Circle (novel) and charactersby Erle Stanley GardnerStarringJim HuttonLeslie NielsenEd AsnerJessica WalterJo Ann PflugMíriam ColónRobert J. WilkeWilliam ElliottCarmen MathewsProductioncompaniesPaisano Productions in association with 20th Century Fox TelevisionDistributed byNBCRelease dateDecember 17, 1971CountryUnited StatesLanguageEnglish They Call It Murder is a 1971 American televisi...

 

Motor vehicle Scania Two-SeriesOverviewManufacturerScaniaProduction1980–1989AssemblySödertälje, SwedenDesignerItaldesign Giugiaro[1]Body and chassisClassHeavy truckBody styleCOEConventional Day cab Streamline ChronologyPredecessorScania 1-seriesSuccessorScania 3-series The Scania GPRT range, later known as the Scania 2-series, is a truck model range introduced in 1980 by Swedish truck manufacturer Scania.[2] It is the successor of the 1-series. The 2-series came in a ...

 

American basketball player and businessman (born 1970) For the Oklahoma City Thunder sportscaster, see Brian Davis (sportscaster). Brian DavisDavis with Duke in 1988Personal informationBorn (1970-06-21) June 21, 1970 (age 53)Atlantic City, New JerseyNationalityAmericanListed height6 ft 7 in (2.01 m)Listed weight200 lb (91 kg)Career informationHigh schoolBladensburg (Bladensburg, Maryland)CollegeDuke (1988–1992)NBA draft1992: 2nd round, 48th overall pickSelected...

 

The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Slobomir University – news · newspapers · books · schola...

 

Logo del partido La Alianza Alternativa para la Justicia Social (en alemán: Alternatives Bündnis für soziale Gerechtigkeit, AB) fue un partido político en el estado federado alemán de Mecklemburgo-Pomerania Occidental. Se presentaba solo a las elecciones de este estado federado. Ideología y organización La AB abogaba por una renta básica universal de 1200 euros, la equiparación de los salarios en el Este y el Oeste y la nacionalización de la atención sanitaria. Además, la AB apoya...

 

Russian businessman and politician In this name that follows Eastern Slavic naming conventions, the patronymic is Igorevich and the family name is Putin. Roman PutinPutin in 2013Born (1977-11-10) 10 November 1977 (age 46)Ryazan, Russian SFSR, Soviet UnionCitizenshipRussianOccupationBusinessman (finance)Political partyRussia without corruption (Россия без коррупции)ParentIgor Putin (father)RelativesVladimir Putin (first cousin once removed) Roman Igorevich Putin (Rus...