Magnetic field of Mars

Martian Dynamo. The schematic illustration of the ancient dipolar magnetic field of Mars generated by a core dynamo process.

The magnetic field of Mars is the magnetic field generated from Mars's interior. Today, Mars does not have a global magnetic field. However, Mars did power an early dynamo that produced a strong magnetic field 4 billion years ago, comparable to Earth's present surface field. After the early dynamo ceased, a weak late dynamo was reactivated (or persisted up to) ~3.8 billion years ago. The distribution of Martian crustal magnetism is similar to the Martian dichotomy. Whereas the Martian northern lowlands are largely unmagnetized, the southern hemisphere possesses strong remanent magnetization, showing alternating stripes. Scientific understanding of the evolution of the magnetic field of Mars is based on the combination of satellite measurements and Martian ground-based magnetic data.

Crustal magnetism

Satellite data

Map of Martian crustal magnetism. Cylindrical projection map of crustal magnetism on Mars observed by MGS satellite at 400 km altitude. Colors represent intensities of the median value of the radial magnetic field components contoured over two orders of magnitude variation.

The reconstruction of the Martian global crustal magnetism is mainly based on magnetic field measurements from the Mars Global Surveyor (MGS) magnetic field experiment/electron reflectometer (MAG/ER) and Mars Atmosphere and Volatile Evolution (MAVEN) magnetic-field data. However, these satellites are located at altitudes of 90–6000 km and have spatial resolutions of ≥160 km,[1] so the measured magnetization cannot observe crustal magnetic fields at shorter length scales.[2]

Mars currently does not sustain an active dynamo based on the Mars Global Surveyor (MGS) and Mars Atmosphere and Volatile Evolution (MAVEN) magnetic field measurements. The satellite data show that the older (~4.2–4.3 billion years, Ga) southern-hemisphere crust records strong remanent magnetization (~22 nT), but the younger northern lowlands have a much weaker or zero remanent magnetization.[3] The large basins formed during the Late Heavy Bombardment (LHB) (~ 4.1–3.9 Ga) (e.g., Argyre, Hellas, and Isidis) and volcanic provinces (e.g., Elysium, Olympus Mons, Tharsis Montes, and Alba Patera) lack magnetic signatures, but the younger Noachian and Hesperian volcanoes (e.g., Tyrrhenus Mons and Syrtis Major) have crustal remanence.[4]

Mars lander observation

The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission measured the crustal field at the Insight landing site located in Elysium Planitia to be ~2 μT.[2] This detailed ground-level data is an order of magnitude higher than satellite-based estimates of ~200 nT at the InSight landing site. The source of this high magnetization is suggested to be Noachian basement (~3.9 Ga) beneath the Early Amazonian and Hesperian flows (~3.6 and 1.5 Ga).[2]

Paleomagnetism

Paleomagnetic evidence

Martian meteorites enable estimates of Mars's paleofield based on the thermal remanent magnetization (or TRM) (i.e., the remanent magnetization acquired when the meteorite cooled below the Curie temperature in the presence of the ambient magnetic field). The thermal remanent magnetization of carbonates in meteorite ALH84001[5] revealed that the early (4.1–3.9 Ga) Martian magnetic field was ~50 μT, much higher than the modern field, suggesting that a Martian dynamo was present until at least this time. Younger (~1.4 Ga) Martian Nakhlite meteorite Miller Range (MIL) 03346 recorded a paleofield of only ~5 μT.[6][7] However, given the possible source locations of the Nakhlite meteorite, this paleointensity still suggests that the surface magnetization is stronger than the magnetic fields estimated from satellite measurements.[7] The ~5 μT paleofield of this meteorite can be explained either by a late active dynamo[6][7] or the field generated from lava flows emplaced in the absence of a late Martian dynamo.[7]

Martian meteorites as paleomagnetic recorders

Martian meteorites contain a wide range of magnetic minerals that can record ancient remanent magnetism, including magnetite, titano-magnetite, pyrrhotite, and hematite. The magnetic mineralogy includes single domain (SD), pseudo single domain (PSD)-like, multi-domain (MD) states. However, only limited Martian meteorites are available to reconstruct the Martian paleofield due to aqueous, thermal, and shock overprints that make many Martian meteorites unsuitable for these studies.[7] Paleomagnetic studies of Martian meteorites are listed in the table below:

Type Crystallization Age Shock events Paleointensity Sources References
Shergottites (Shergotty) ~343 Ma multiple shock events 2 μT, 0.25–1 μT shock demagnetization [8]
Shergottites (Tissint) ~600 Ma multiple shock events 2 μT remagnetized by impact events [9]
Nakhlite ~1.3–1.4 Ga - 4 μT late dynamo ? [6]
Nakhlite ~1.4 Ga no significant shock event 5 μT old source rock or late dynamo ? [7]
ALH84001 ~4.5 Ga ~4.0 Ga (major impact) 50 μT active early dynamo [5]
ALH84001 ~4.5 Ga ~4.0 Ga (major impact) [10]

Martian dynamo

Timeline of Martian dynamo

The exact timing and duration of the Martian dynamo remain unknown, but there are several constraints from satellite observations and paleomagnetic studies. The strong crustal magnetization in the southern hemisphere and the paleomagnetic evidence of ALH84001 indicate that Mars sustained a strong magnetic field between ~4.2–4.3 Ga. The absence of crustal magnetic signatures in the upper lowlands and large impact basins implies dynamo termination prior to the formation of these basins (~4.0–3.9 Ga). Magnetic anomalies from two young volcanoes (e.g., Tyrrhenus Mons, Syrtis Major) may reflect the presence of a Martian magnetic field with possible magnetic reversals during the late Noachian and Hesperian period.[4]

Timing of the Martian dynamo. Grey shading represents possible age constraints (in Ga years) for the early and late dynamo. Stars indicate new age constraints from MAVEN data. [a] Early dynamo before the formation of Hellas, Isidis, and Argyre. [b] The cessation of the early dynamo based on large basin population. [c] The age of ALH84001. [d] Late dynamo after the formation of the major basins.

Hemispheric magnetic dichotomy

One unresolved question is why the Martian crustal hemispheric dichotomy correlates to the magnetic dichotomy (and whether the origin of this dichotomy is an exogenic or endogenic process). One exogenic explanation is that the Borealis impact event resulted in thermal demagnetization of an initially magnetized northern hemisphere,[11] but the proposed age of this event (~4.5 Ga) is long before the Martian dynamo termination (~4.0–4.1 Ga).[11][12] An alternate model suggests that degree-1 mantle convection (i.e., a convective structure in which mantle upwelling dominates in one hemisphere but downwelling takes in the other hemisphere) can produce a single-hemisphere dynamo.[13]

Alternating stripes

One striking feature in Martian crustal magnetism is the long E–W trending alternating stripes on the southern hemisphere (Terra Cimmeria and Terra Sirenum).[14] It has been proposed that these bands are formed by plate tectonic activity similar to the alternating magnetic polarity caused by seafloor crust spreading on Earth[14] or the results of repeated dike intrusions.[15] However, careful selection of the data analysis method is required to interpret these alternating stripes.[16] Using sparse solutions (e.g., L1 regularization) of crustal-field measurements instead of smoothing solutions (e.g., L2 regularization) shows highly magnetized local patches (with the rest of the crust unmagnetized) instead of stripes.[16] These patches might be formed by localized events such as volcanism or heating by impact events,[16] which may not require continuous fields (e.g., intermittent dynamo).[11]

Dynamo mechanisms

The dynamo mechanism of Mars is poorly understood but expected to be similar to the Earth's dynamo mechanism.[17][18] Thermal convection due to the high thermal gradients in the hot, initial core was likely the primary mechanism for driving a dynamo early in Mars's history.[17][18] As the mantle and core cooled over time, inner-core crystallization (which would provide latent heat) and chemical convection may have played a major role in driving the dynamo. Following inner-core formation, light elements migrated from the inner-core boundary into the liquid outer core and drove convection by buoyancy.[18] However, even InSight lander data could not confirm the presence of Mars's solid inner core,[19] and we cannot exclude the possibility that there was no core crystallization (only thermal convection without chemical convection).[17][18] Also, the possibility that magnetic fields may have been generated by a magma ocean cannot be ruled out.[17]

It is also unclear when and by what mechanism the Martian dynamo shut down. Perhaps a change in the cooling rate of the mantle may have caused the cessation of the Martian dynamo.[17] One theory is giant impacts during the early and mid-Noachian periods stopped the dynamo by decreasing global heat flow at the core-mantle boundary.[20]

The seismic measurements from the InSight lander revealed that the Martian outer core is in a liquid state and larger than expected.[19] In one model, a partially crystallized Martian core explains the current state of Mars (i.e., lack of magnetic field despite liquid outer core), and this model predicts that the magnetic field has the potential to be reactivated in the future.[18]

Possible dynamo mechanisms
Dynamo sources Dynamo mechanisms Notes References
Thermal Thermal convection - requires high temperature, high sulfur content

- no solid inner core

[17][18]
Magma ocean - requires conductive silicate-dominated melts [17]
Thermocompositional Chemical convection

(Top-down crystallization)

- requires low temperature, low thermal expansivity, low sulfur content

- possible future dynamo reactivation

[18]
Chemical convection

(Bottom-up crystallization or iron snow)

- requires low temperature, high thermal expansivity, high sulfur content

- powers dynamo based on the light element partitioning coefficient

[18]
Mechanical Impact events - reduces global heat flow at the core mantle boundary and stops dynamo [20]

See also

References

  1. ^ Langlais, Benoit; Thébault, Erwan; Houliez, Aymeric; Purucker, Michael E.; Lillis, Robert J. (2019). "A New Model of the Crustal Magnetic Field of Mars Using MGS and MAVEN". Journal of Geophysical Research: Planets. 124 (6): 1542–1569. Bibcode:2019JGRE..124.1542L. doi:10.1029/2018JE005854. ISSN 2169-9100. PMC 8793354. PMID 35096494.
  2. ^ a b c Johnson, Catherine L.; Mittelholz, Anna; Langlais, Benoit; Russell, Christopher T.; Ansan, Véronique; Banfield, Don; Chi, Peter J.; Fillingim, Matthew O.; Forget, Francois; Haviland, Heidi Fuqua; Golombek, Matthew (March 2020). "Crustal and time-varying magnetic fields at the InSight landing site on Mars". Nature Geoscience. 13 (3): 199–204. Bibcode:2020NatGe..13..199J. doi:10.1038/s41561-020-0537-x. ISSN 1752-0908. S2CID 211265951.
  3. ^ Acuña, M. H.; Connerney, J. E. P.; F, N.; Ness; Lin, R. P.; Mitchell, D.; Carlson, C. W.; McFadden, J.; Anderson, K. A.; Rème, H.; Mazelle, C. (1999-04-30). "Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor MAG/ER Experiment". Science. 284 (5415): 790–793. Bibcode:1999Sci...284..790A. doi:10.1126/science.284.5415.790. PMID 10221908.
  4. ^ a b Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.; Langlais, B. (2012). "The history of Mars's dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major". Journal of Geophysical Research: Planets. 117 (E10). Bibcode:2012JGRE..11710007M. doi:10.1029/2012JE004099. ISSN 2156-2202.
  5. ^ a b Weiss, Benjamin P.; Vali, Hojatollah; Baudenbacher, Franz J.; Kirschvink, Joseph L.; Stewart, Sarah T.; Shuster, David L. (2002-08-15). "Records of an ancient Martian magnetic field in ALH84001". Earth and Planetary Science Letters. 201 (3): 449–463. Bibcode:2002E&PSL.201..449W. doi:10.1016/S0012-821X(02)00728-8. ISSN 0012-821X.
  6. ^ a b c Shaw, John; Hill, Mimi J; Openshaw, Steven J (2001-08-15). "Investigating the ancient Martian magnetic field using microwaves". Earth and Planetary Science Letters. 190 (3): 103–109. Bibcode:2001E&PSL.190..103S. doi:10.1016/S0012-821X(01)00381-8. ISSN 0012-821X.
  7. ^ a b c d e f Volk, Michael W. R.; Fu, Roger R.; Mittelholz, Anna; Day, James M. D. (2021). "Paleointensity and Rock Magnetism of Martian Nakhlite Meteorite Miller Range 03346: Evidence for Intense Small-Scale Crustal Magnetization on Mars". Journal of Geophysical Research: Planets. 126 (5): e2021JE006856. Bibcode:2021JGRE..12606856V. doi:10.1029/2021JE006856. ISSN 2169-9100. S2CID 236613272.
  8. ^ Cisowski, S. M (1986-06-01). "Magnetic studies on Shergotty and other SNC meteorites". Geochimica et Cosmochimica Acta. 50 (6): 1043–1048. Bibcode:1986GeCoA..50.1043C. doi:10.1016/0016-7037(86)90386-8. ISSN 0016-7037.
  9. ^ Gattacceca, Jérôme; Hewins, Roger H.; Lorand, Jean-Pierre; Rochette, Pierre; Lagroix, France; Cournède, Cécile; Uehara, Minoru; Pont, Sylvain; Sautter, Violaine; Scorzelli, Rosa B.; Hombourger, Chrystel (2013). "Opaque minerals, magnetic properties, and paleomagnetism of the Tissint Martian meteorite". Meteoritics & Planetary Science. 48 (10): 1919–1936. Bibcode:2013M&PS...48.1919G. doi:10.1111/maps.12172. ISSN 1945-5100. S2CID 6599459.
  10. ^ Antretter, Maria; Fuller, Mike; Scott, Edward; Jackson, Mike; Moskowitz, Bruce; Solheid, Peter (2003). "Paleomagnetic record of Martian meteorite ALH84001". Journal of Geophysical Research: Planets. 108 (E6): 5049. Bibcode:2003JGRE..108.5049A. doi:10.1029/2002JE001979. ISSN 2156-2202.
  11. ^ a b c Tikoo, Sonia M.; Evans, Alexander J. (2022-05-30). "Dynamos in the Inner Solar System". Annual Review of Earth and Planetary Sciences. 50 (1): annurev–earth–032320-102418. Bibcode:2022AREPS..50...99T. doi:10.1146/annurev-earth-032320-102418. ISSN 0084-6597. S2CID 245082591.
  12. ^ Bottke, William F.; Andrews-Hanna, Jeffrey C. (May 2017). "A post-accretionary lull in large impacts on early Mars". Nature Geoscience. 10 (5): 344–348. Bibcode:2017NatGe..10..344B. doi:10.1038/ngeo2937. ISSN 1752-0908.
  13. ^ Stanley, Sabine; Elkins-Tanton, Linda; Zuber, Maria T.; Parmentier, E. Marc (2008-09-26). "Mars' Paleomagnetic Field as the Result of a Single-Hemisphere Dynamo". Science. 321 (5897): 1822–1825. Bibcode:2008Sci...321.1822S. doi:10.1126/science.1161119. ISSN 0036-8075. PMID 18818355. S2CID 206514329.
  14. ^ a b Connerney, J. E. P.; Acuña, M. H.; Ness, N. F.; Kletetschka, G.; Mitchell, D. L.; Lin, R. P.; Reme, H. (2005-10-18). "Tectonic implications of Mars crustal magnetism". Proceedings of the National Academy of Sciences. 102 (42): 14970–14975. Bibcode:2005PNAS..10214970C. doi:10.1073/pnas.0507469102. ISSN 0027-8424. PMC 1250232. PMID 16217034.
  15. ^ Nimmo, Francis (2000-05-01). "Dike intrusion as a possible cause of linear Martian magnetic anomalies". Geology. 28 (5): 391–394. Bibcode:2000Geo....28..391N. doi:10.1130/0091-7613(2000)28<391:DIAAPC>2.0.CO;2. ISSN 0091-7613.
  16. ^ a b c Moore, Kimberly M.; Bloxham, Jeremy (2017). "The construction of sparse models of Mars's crustal magnetic field". Journal of Geophysical Research: Planets. 122 (7): 1443–1457. Bibcode:2017JGRE..122.1443M. doi:10.1002/2016JE005238. ISSN 2169-9100. S2CID 125144097.
  17. ^ a b c d e f g Stevenson, David J. (July 2001). "Mars' core and magnetism". Nature. 412 (6843): 214–219. Bibcode:2001Natur.412..214S. doi:10.1038/35084155. ISSN 1476-4687. PMID 11449282. S2CID 4391025.
  18. ^ a b c d e f g h Hemingway, Douglas J.; Driscoll, Peter E. (2021). "History and Future of the Martian Dynamo and Implications of a Hypothetical Solid Inner Core". Journal of Geophysical Research: Planets. 126 (4): e2020JE006663. Bibcode:2021JGRE..12606663H. doi:10.1029/2020JE006663. ISSN 2169-9100. S2CID 233738133.
  19. ^ a b Cottaar, Sanne; Koelemeijer, Paula (2021-07-23). "The interior of Mars revealed". Science. 373 (6553): 388–389. Bibcode:2021Sci...373..388C. doi:10.1126/science.abj8914. PMID 34437103. S2CID 236179559.
  20. ^ a b Roberts, J. H.; Lillis, R. J.; Manga, M. (2009). "Giant impacts on early Mars and the cessation of the Martian dynamo". Journal of Geophysical Research: Planets. 114 (E4). Bibcode:2009JGRE..114.4009R. doi:10.1029/2008JE003287. ISSN 2156-2202.

Read other articles:

إيلون ماسك (بالإنجليزية: Elon Musk)‏    معلومات شخصية اسم الولادة (بالإنجليزية: Elon Reeve Musk)‏[1]  الميلاد 28 يونيو 1971 (52 سنة)[2][3][4]  بريتوريا  الإقامة بل أير  [لغات أخرى]‏[5]ساسكاتشوانكينغستون (1990–1992)  مواطنة جنوب إفريقيا (1971–) كندا (1989–) الول...

 

 

Artículo principal: Clasificación de Conmebol para la Copa Mundial de Fútbol de 2006 Chile7.° lugar Titular 2003 Titular 2003-2005 Alternativo 2003 Alternativo 2004-2005 Datos generales Asociación Federación de Fútbol de Chile Confederación Conmebol Seudónimo La Roja, El equipo de todos Ranking FIFA 7.º lugar (6 de julio de 2017)[1]​ Entrenador Juvenal Olmos (2003-2005) Nelson Acosta (2005) Estadio Estadio Nacional, Chile Estadísticas Mejor resultado Chile Chile 3:1...

 

 

Ellen WongWong di San Diego Comic-Con International 2010Lahir1984/1985 (umur 38–39)Scarborough, Ontario, KanadaPekerjaanAktrisTahun aktif2005–sekarang Ellen Wong (kelahiran 1984 atau 1985)[1] adalah seorang aktris Kanada. Ia dikenal karena perannya sebagai Knives Chau dalam film tahun 2010 Scott Pilgrim vs. the World dan Jill Mouse Chen dalam serial The CW The Carrie Diaries. Kehidupan awal Wong lahir di Scarborough, Ontario, dari orang tua keturunan Kamboja. Ia mulai be...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Box office dapat merujuk kepada beberapa artikel antara lain Box office Box Office Mojo Box Office India Box office bomb Halaman disambiguasi ini berisi artikel dengan judul yang sering dikaitkan dengan Box Office.Jika Anda mencapai halaman ini dari s...

 

 

2007 American filmNo RefundsStarringDoug StanhopeRelease date August 14, 2007 (2007-08-14) Running time70 minutesCountryUnited StatesLanguageEnglish No Refunds is Doug Stanhope's third stand-up DVD. Recorded at the Gotham Comedy Club in New York, NY on March 12, 2007. The performance originally aired August 3, 2007 on Showtime. Track listing Introduction Sanitized Generation Carnival Head Drugs for a Brave New Cubicle Will Work for Vagina Secret of My Success Funnier Drunk Live...

 

 

Ernst Ulrich von Weizsäcker (2010) Ernst Ulrich Michael Freiherr von Weizsäcker (* 25. Juni 1939 in Zürich) ist ein deutscher Umweltwissenschaftler und Politiker (SPD). Von 1998 bis 2005 war er Mitglied des Deutschen Bundestages. Von 2012 bis 2018 war er Ko-Präsident des Club of Rome.[1] Inhaltsverzeichnis 1 Familie 2 Ausbildung und Wissenschaft 3 Politik 4 Funktionen und Mitgliedschaften 5 Ehrungen 6 Veröffentlichungen (Auswahl) 7 Weblinks 8 Einzelnachweise Familie Ernst Ulrich ...

Puncak kekuasaan Kekaisaran Ghana. Kekaisaran Ghana atau Kekaisaran Wagadou (750-1076) adalah kekaisaran yang terletak di Mauritania tenggara, Mali barat, dan Senegal timur. Kekaisaran ini merupakan kekaisaran pertama yang bangkit di Afrika., dimulai pertama kali pada abad ke-8. Referensi Mauny, R. (1971), “The Western Sudan” in Shinnie: 66-87. Monteil, Charles (1953). La Légende du Ouagadou et l'Origine des Soninké. Mélanges Ethnologiques (dalam bahasa Prancis). Dakar: Bulletin de l...

 

 

Sporting event delegationColombia at the2023 World Aquatics ChampionshipsFlag of ColombiaFINA codeCOLNational federationFederación Colombiana de NataciónWebsitefecna.comin Fukuoka, JapanCompetitors15 in 4 sportsMedalsRanked 21st Gold 0 Silver 1 Bronze 0 Total 1 World Aquatics Championships appearances197319751978198219861991199419982001200320052007200920112013201520172019202220232024 Colombia is scheduled to compete at the 2023 World Aquatics Championships in Fukuoka, Japan from 14 to 30 Ju...

 

 

Koordinat: 39°26′26.26″N 44°14′04.26″E / 39.4406278°N 44.2345167°E / 39.4406278; 44.2345167 Foto situs Durupınar pada tahun 2007. Durupinar (dalam ejaan bahasa Turki: Durupınar) adalah nama situs atau tempat ditemukannya suatu struktur tanah unik di Gunung Tendürek, daerah Turki sebelah timur. Tempat ini terletak 3 kilometer (2 mi) di sebelah utara perbatasan Turki dengan Iran, 16 km (10 mi) di sebelah tenggara kota Doğubeyazıt, di provi...

Not to be confused with the 2017 and withdrawn 2019 candidate for Thurrock (UK Parliament constituency). British politician (1934–2017) Kevin McNamaraKSGShadow Secretary of State for Northern IrelandIn office13 July 1987 – 20 October 1994LeaderNeil KinnockJohn SmithMargaret Beckett (acting)Tony BlairShadowingTom KingPeter BrookePatrick MayhewPreceded byPeter ArcherSucceeded byMo MowlamMember of Parliamentfor Kingston upon Hull NorthKingston upon Hull Central (1974–1983)In ...

 

 

Australian association football club Football clubCairns FCFull nameCairns Football ClubFounded2012Dissolved2018GroundBarlow ParkCapacity18,000 (1,700 seated)CoachDanny GraystoneLeagueNPL Queensland20186thWebsiteClub website Home colours Away colours Cairns FC, previously known as FNQ FC Heat, was an Australian semi-professional soccer club based in the regional city of Cairns, in the far north of Queensland. Founded in 2012, the club was awarded a licence to compete in the National Premier L...

 

 

Перша лігаСезон 2012—2013Підвищилися ФК «Севастополь»Вибули «Оболонь»(знялася протягом сезону)«Арсенал»ФК «Одеса»«Кримтеплиця» (відмова від участі у наступному сезоні)Зіграно матчів 290Забито голів 689 (2.38 за гру)Найкращий бомбардир Сергій Кузнецов (ФК «Севастополь») ...

Основная статья: Шерлок Холмс На этой странице приведён список фильмов, одним из героев которых является Шерлок Холмс — персонаж, созданный Артуром Конаном Дойлом. Шерлок Холмс является одним из самых популярных вымышленных персонажей в истории: фильмы, сериалы и ани...

 

 

Erik SolbakkenSolbakken pada Mei 2014Lahir17 November 1984 (umur 39)Hemsedal, NorwegiaKebangsaanNorwegiaPekerjaanPresenter televisiTahun aktif2005–kini Erik Solbakken (lahir 17 November 1984)[1] adalah seorang presenter televisi Norwegia. Solbakken memandu Kontes Lagu Eurovision 2010 bersama dengan Haddy Jatou N'jie dan Nadia Hasnaoui. Referensi ^ Bakker, Sietse (2010-03-10). Nadia, Haddy and Erik to host 2010 Eurovision Song Contest. European Broadcasting Union. Diakses t...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2020) ديك هيس (بالإنجليزية: Dick Hess)‏  معلومات شخصية الميلاد 12 سبتمبر 1938  بيتسبرغ  الوفاة 6 سبتمبر 2013 (74 سنة) [1]  بيتسبرغ  مواطنة الولايات المتحدة  ...

2010 American filmKnuckleheadPromotional posterDirected byMichael WatkinsWritten byBear AderholdThomas F. X. SullivanAdam RifkinProduced byMichael PavoneStarringBig ShowMark FeuersteinDennis FarinaCinematographyKenneth Zunder and Ollie TurnerEdited byPeck Prior and Jai PaddamMusic byJames A. JohnstonProductioncompanyWWE StudiosDistributed bySamuel Goldwyn FilmsRelease date October 22, 2010 (2010-10-22) Running time91 minutesCountryUnited StatesLanguageEnglishBox office$7,927 (R...

 

 

  此條目介紹的是臺北市的私立高中。关于臺南市的一所市立國民中學,请见「臺南市立延平國民中學」。 坐标:25°2′11.20″N 121°32′22.41″E / 25.0364444°N 121.5395583°E / 25.0364444; 121.5395583 臺北市私立延平高級中學地址臺北市大安區建國南路一段275號其它名称Yanping High School 簡稱YPHS类型完全中學创办日期1946学区臺北市大安區校長施雅慧女士年级高中部2...

 

 

Carnaval de Cádiz Gran Teatro FallaLocalizaciónPaís España EspañaComunidad Andalucía AndalucíaLocalidad CádizDatos generalesTipo CarnavalComienzo 17 de mayo de 1965Significado Fiesta de disfracesRelacionada con Carnaval en España[editar datos en Wikidata] El Carnaval de Cádiz es uno de los carnavales más famosos e importantes de España, por lo que ha sido reconocido en 1980 conjuntamente con el Carnaval de Santa Cruz de Tenerife, con la declaración de Fie...

Market Hall in Monmouth, WalesThe Market HallThe Market Hall, now the home of Monmouth MuseumGeneral informationTypeMarket HallAddressPriory StreetTown or cityMonmouthCountryWalesCoordinates51°48′47″N 2°42′56″W / 51.813028°N 2.715444°W / 51.813028; -2.715444Current tenantsMonmouth MuseumOpened1840 (1840)Renovated1968–69Design and constructionArchitect(s)George Vaughan MaddoxDesignationsGrade II listedRenovating teamArchitect(s)Donald Insall Associate...

 

 

Part of a series onAnthropology OutlineHistory Types Archaeological Biological Cultural Linguistic Social Archaeological Aerial Aviation Battlefield Biblical Bioarchaeological Environmental Ethnoarchaeological Experiential Feminist Forensic Maritime Paleoethnobotanical Zooarchaeological Biological Anthrozoological Biocultural Evolutionary Forensic Molecular Neurological Nutritional Paleoanthropological Primatological SocialCultural Applied Art Cognitive Cyborg Development Digital Ecological E...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!