A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences between the magnitudes of the numbers involved.
Unlike a linear scale where each unit of distance corresponds to the same increment, on a logarithmic scale each unit of length is a multiple of some base value raised to a power, and corresponds to the multiplication of the previous value in the scale by the base value. In common use, logarithmic scales are in base 10 (unless otherwise specified).
A logarithmic scale is nonlinear, and as such numbers with equal distance between them such as 1, 2, 3, 4, 5 are not equally spaced. Equally spaced values on a logarithmic scale have exponents that increment uniformly. Examples of equally spaced values are 10, 100, 1000, 10000, and 100000 (i.e., 101, 102, 103, 104, 105) and 2, 4, 8, 16, and 32 (i.e., 21, 22, 23, 24, 25).
Some of our senses operate in a logarithmic fashion (Weber–Fechner law), which makes logarithmic scales for these input quantities especially appropriate. In particular, our sense of hearing perceives equal ratios of frequencies as equal differences in pitch. In addition, studies of young children in an isolated tribe have shown logarithmic scales to be the most natural display of numbers in some cultures.[1]
Graphic representation
The top left graph is linear in the X- and Y-axes, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000.
The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis.
Presentation of data on a logarithmic scale can be helpful when the data:
covers a large range of values, since the use of the logarithms of the values rather than the actual values reduces a wide range to a more manageable size;
A slide rule has logarithmic scales, and nomograms often employ logarithmic scales. The geometric mean of two numbers is midway between the numbers. Before the advent of computer graphics, logarithmic graph paper was a commonly used scientific tool.
A modified log transform can be defined for negative input (y < 0) to avoid the singularity for zero input (y = 0), and so produce symmetric log plots:[2][3]
for a constant C=1/ln(10).
Logarithmic units
A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the logarithm.
In addition, several industrial measures are logarithmic, such as standard values for resistors, the American wire gauge, the Birmingham gauge used for wire and needles, and so on.
Tuffentsammer, Karl; Schumacher, P. (1953). "Normzahlen – die einstellige Logarithmentafel des Ingenieurs" [Preferred numbers - the engineer's single-digit logarithm table]. Werkstattechnik und Maschinenbau (in German). 43 (4): 156.
Tuffentsammer, Karl (1956). "Das Dezilog, eine Brücke zwischen Logarithmen, Dezibel, Neper und Normzahlen" [The decilog, a bridge between logarithms, decibel, neper and preferred numbers]. VDI-Zeitschrift (in German). 98: 267–274.
Ries, Clemens (1962). Normung nach Normzahlen [Standardization by preferred numbers] (in German) (1 ed.). Berlin, Germany: Duncker & Humblot Verlag. ISBN978-3-42801242-8. (135 pages)