Since the first synthetic cannabinoids were discovered in recreational drug products in 2008, new synthetic cannabinoids with no precedent in the scientific literature continue to be identified. These synthetic cannabinoids appear to be rationally designed by clandestine medicinal chemists. These unprecedented synthetic cannabinoids often feature alphanumeric code names intended to mimic the style of chemical nomenclature used by academic laboratories and pharmaceutical companies, and there is generally little, if any, information available regarding their pharmacology and toxicology at the time of first discovery.
5F-SDB-006 — the terminally fluorinated (5-fluoropentyl) analogue of SDB-006.[2]
AB-001 — one of the earliest adamantane derivatives discovered as a designer cannabinoid. AB-001 was unknown in the scientific literature at the time of its discovery, and has since been characterized as a CB1 and CB2 agonist with weak cannabimimetic activity in rats.[3]
APICA — also known as 2NE1 and SDB-001, APICA is the carboxamide analogue of AB-001 and was similarly unknown in the scientific literature at the time of its discovery. Like AB-001, APICA is a CB1 and CB2 agonist possessing moderate cannabimimetic potency in rats.[3]
APINACA — also known as AKB-48. APINACA is the indazole analogue of APICA.[4]
NNE1 — also known as NNEI, MN-24 and AM-6527, is the carboxamide analogue of JWH-018. NNE1 was first described in a paper by Abbott Laboratories in 2011.[5]
SDB-006 — is a benzylic analogue of APICA, and was discovered during research related to AB-001 and APICA.[3]
STS-135 — the terminally fluorinated (5-fluoro) analogue of APICA.[6]STS-135 is believed to be named after the STS-135 jet propulsion system, and functions as an agonist at CB1 and CB2 receptors.[2]
^Banister, S. D.; Moir, M.; Stuart, J.; Kevin, R. C.; Wood, K. E.; Longworth, M.; Wilkinson, S. M.; Beinat, C.; Buchanan, A. S.; Glass, M.; Connor, M.; McGregor, I. S.; Kassiou, M. (Sep 2015). "Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA". ACS Chem Neurosci. 6 (9): 1546–59. doi:10.1021/acschemneuro.5b00112. PMID26134475.
^Uchiyama, N.; Kawamura, M.; Kikura-Hanajiri, R.; Goda, Y. (2012). "URB-754: A new class of designer drug and 12 synthetic cannabinoids detected in illegal products". Forensic Science International. 227 (1–3): 21–32. doi:10.1016/j.forsciint.2012.08.047. PMID23063179.
^Blaazer, A. R.; Lange, J. H. M.; Van der Neut, M. A. W.; Mulder, A.; Den Boon, F. S.; Werkman, T. R.; Kruse, C. G.; Wadman, W. J. (2011). "Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: Design, synthesis, structure–activity relationships, physicochemical properties and biological activity". European Journal of Medicinal Chemistry. 46 (10): 5086–5098. doi:10.1016/j.ejmech.2011.08.021. PMID21885167.
^Wilkinson, S. M.; Banister, S. D.; Kassiou, M. (2015). "Bioisosteric Fluorine in the Clandestine Design of Synthetic Cannabinoids". Australian Journal of Chemistry. 68: 4. doi:10.1071/CH14198.