Liquid smoke

Liquid smoke
Spoonful of liquid smoke
Names
Other names
wood vinegar, pyroligneous acid, smoke flavor, smoke flavouring(s), natural condensed smoke
Properties
Appearance Yellow to red liquid
Odor acrid smoky
miscible
Solubility in ethanol miscible
Solubility in propylene glycol miscible
Solubility in oils immiscible
Related compounds
Related compounds
Pyroligneous acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
A bottle of hickory liquid smoke sauce

Liquid smoke is a water-soluble yellow to red liquid[1] used as a flavoring as a substitute for cooking with wood smoke while retaining a similar flavor. It can be used to flavor any meat or vegetable. It is available as pure condensed smoke from various types of wood, and as derivative formulas containing additives.

History

Pyrolysis or thermal decomposition of wood in a low oxygen manner originated prehistorically to produce charcoal. Condensates of the vapors eventually were made and found useful as preservatives. For centuries, water-based condensates of wood smoke were popularly called "wood vinegar", presumably due to its use as food vinegar. Pliny the Elder recorded in one of his ten volumes of Natural History the use of wood vinegar as an embalming agent, declaring it superior to other treatments he used. In 1658, Johann Rudolf Glauber outlined the methods to produce wood vinegar during charcoal making.[2] Further, he described the use of the water insoluble tar fraction as a wood preservative and documented the freezing of the wood vinegar to concentrate it. Use of the term "pyroligneous acid" for wood vinegar emerged by 1788.

In the United States, in 1895, E. H. Wright inaugurated the era of commercial distribution of pyroligneous acid under a new name, liquid smoke.[3] Among Wright's innovations were the standardization of the product, marketing and distribution. Wright's Liquid Smoke, since 1997 owned by B&G Foods, and its modern-day successors have always been the subject of controversy about their contents and production, but in 1913, Wright prevailed in a federal misbranding case. Case judge Van Valkenburg wrote:[4]

The Government, in trying to show that this is not smoke produced by combustion, has shown that it is produced in exactly the same kind of way that is stated on that label. The fact is that they have produced something here which they say has something of the flavor and properties similar to the curative properties of smoke; they get it out of wood and they get it by distillation and it turns out to be a substance like, if not exactly identical with pyroligneous acid. Well, nobody could be deceived into thinking it was specifically what the indictment charges they are being deceived with. It is a thing which is produced in such a manner from the art and methods employed in it, that the application of the term "smoke" to it seems to me to be apt or applicable instead of deceptive, and it does not deceive in the sense this statute implies.

Historically, all pyroligneous acid products, Wright's product and many other condensates have been made as byproducts of charcoal manufacturing, which was of greater value. Chemicals such as methanol, acetic acid and acetone have been isolated from these condensates and sold. With the advent of lower cost fossil fuel sources, today these and other wood derived chemicals retain only small niches. Today there are many manufacturing locations around the world, most of which pyrolyze wood primarily to generate condensates which are further processed to make hundreds of derivative products. These are now referred to less as liquid smoke products, and instead as smoke flavorings, smoke flavors, and natural condensed smoke.

Production

The condensed products from the destructive distillation of wood are called "liquid smoke" or "pyroligneous acid". There are no standards of identity, prescribed production methods, or tests which distinguish between liquid smoke and pyroligneous acid; they can be considered to be the same. However, the numerous variables that are manipulated during pyrolysis do lead to a wide range of compositions of the condensates.[5] In addition, implementation of many further processing steps by concentration, dilution, distillation, extraction, and use of food additives has led to the many hundreds of different products on the market worldwide.

Wood, particularly hardwood, is by far the most widely used biomass pyrolyzed to make liquid smoke. Commercial products are made using both batch and continuous methods. Commercial products are made using a range of reactors from rotary calciners,[6] heated screws,[7] batch charcoal kilns,[8] to fast pyrolysis reactors.[9] The process type and conditions of processing lead to greater variances between the condensates than the differences between the common wood types that are in use.[10] Variables such as feed rate, vapor residence time, particle size, oxygen infiltration, and temperature can have substantial effects on yield and composition of the condensates. Wide ranges of chemical composition are reported throughout the literature and unless the process and conditions are cited, there is limited utility of such results. Commercial manufacturers strive to control their manufacturing variables in order to standardize product compositions.

Water is added either during condensation or after to cause separation of three fractions.[11] Once water is added, the aqueous phase becomes the largest and most useful fraction. It contains wood-derived chemical compounds of higher chemical polarity such as those found in carboxylic acid, aldehyde, and phenol chemical classes. Many compounds together are responsible for the flavor, browning, antioxidant, and antimicrobial effects of smoke and liquid smoke. The smallest condensed fraction is the lowest-polarity upper phase which a mix of phytosterols and other oily, waxy substances. The lower phase is commonly referred to as tar. It is an intermediate-polarity mixture of phenolic polymers, secondary and tertiary reaction products,[12] some of the water-soluble polar compounds partitioned in the amount of which is governed by individual partition coefficients, water and the bulk of the polycyclic aromatic hydrocarbons. Wood tar has been used as a preservative, water repellent, and antiseptic. Tar from birch was produced as a commodity product on large scale in northern Europe. Today commercial liquid smoke products are still prepared from this phase.[13] Liquid smoke condensates are made commercially for the global meat industry in the U.S. and Europe and are regulated by governments. Liquid smoke is still referred to as wood vinegar, and is made and used indigenously in places including Japan, China, Indonesia, Malaysia, Brazil, and Southeast Asia.[14]

Use

Food

The application of liquid smoke to food has grown to encompass a wide variety of methods[15] employing thousands of commercial formulations worldwide. Liquid smoke is used extensively by topical application to replace direct wood-smoking of food. In addition to flavor, reaction color, anti-microbial, and texture effects are obtained by topical addition followed by thermal processing. Dipping products in diluted solutions or soaking them in brines containing liquid smoke followed by heating was done long before the modern industrial era using Wright's liquid smoke and pyroligneous acid precursors. Allen[16] patented a method of regenerating smoke using air atomization, which is still the leading technology for using condensed smoke products to treat processed meat, cheese, fish, and other foods in batch smokehouses.

As the meat-processing industry has consolidated, continuous processes have evolved, and direct applications of solutions of liquid smoke via showering or drenching systems installed on continuous lines are the usual methods of application. In North America, there are more than thirty-five processed-meat plants utilizing bulk tanks to receive tankers of liquid smoke for topical application as an alternative to direct wood smoking. Topical application by impregnation of fibrous,[17] laminated,[18] and plastic casings is also used;[19] meat products are stuffed into these casings and thermally processed.

The use of natural condensed smoke preparations internally in food is another way to impart smoke flavor, used when other technical functions of smoke do not need to be expressed in a finished food. This can be done directly by adding into blenders with meat or other foods, or injecting whole muscle meat. The smoke flavors can also be incorporated into sauces such as barbeque or dry seasonings. Aqueous smoke solutions can also be extracted into oil, spray-dried using maltodextrin carriers, or plated onto foods and food ingredients such as malt flour, yeast, or salt.

Non-food

Extensive references to beneficial uses of pyroligneous acid in plants for seed germination, pest control, microbial control, plant structural enhancements are reported.[20] Livestock benefits such as antimicrobial preservation of feed,[21] nutrient digestibility,[22] and other claims are found. Scientific agricultural studies can be found in peer-reviewed journals,[23] but many agricultural benefits such as soil quality improvement, better seed germination, and healthier foliage are widely promoted without attribution.[citation needed] Broad claims of medical benefits to humans in digestive ailments, dental infections, liver, heart, skin ailments, ears, eyes are found,[citation needed] but the literature is devoid of accepted scientific studies for such testimonial claims in humans.

Safety

The first government-sanctioned assessment of liquid smoke was undertaken by the United States Food and Drug Administration (FDA) in 1981.[24] The committee commissioned by the FDA to evaluate information on the products concluded there was no evidence demonstrating the products were a hazard to the public the way they were being used. Today, these products stand as Generally Recognized as Safe (GRAS) in the United States and may be used at levels necessary to produce the intended technical effects. Manufacturing plants where liquid smoke is made are regulated and inspected by the FDA.

The European Union established procedures for the safety assessment and the authorization of smoke flavorings used or intended for use in or on foods in 2003.[25] The European Food Safety Authority (EFSA) was charged with evaluating information on primary condensate smoke flavorings. Information on twelve products from ten applicants were evaluated by EFSA. Opinions were published on all twelve.[26][27][28][29][30][31][32][33][34][35][36][37] The products considered were what each applicant considered their own primary product prior to any further processing or derivatization.

All twelve products were determined to be genotoxic positive by in vitro methods. However, when evaluated by in vivo methods ten were found to not be of concern by EFSA. The AM-01 product was judged inconclusive and FF-B was considered weakly genotoxic. Based upon the NOAEL determinations for each product and supplemental information supplied by some manufacturers, usage limits for most products have been established and are conveyed by manufacturers to users. Most of these primary products and their derivatives remain in commercial use. Only products which are the subjects of these evaluations are authorized to be used in commerce within the EU.

References

  1. ^ George A. Burdock (2010), "PYROLIGNEOUS ACID EXTRACT", Fenaroli's Handbook of Flavor Ingredients (6th ed.), Taylor & Francis, pp. 1775–1776, ISBN 978-1-4200-9077-2
  2. ^ Glauber, Johann Rudolph (1658). Furni Novi Philosophici, Sive Descriptio Artis Destillatoriae Novae ... London: Joannem Janssonium.
  3. ^ Unusual Stories of Unusual Men: Ernest H. Wright — Classification: "Condensed Smoke". The Rotarian. 1923. pp. 209–10, 240.
  4. ^ U.S.Department of Agriculture Division of Publications Service and Regulatory Announcements, 1914. Item number 2828. Alleged misbranding of liquid smoke. U.S.v.E.H.Wright. F.&D.No 3410.I.S.No 14393-c. Washington: Government printing office. 1915. p. 59.
  5. ^ Montazeri, Naim (January 2013). "Chemical characterization of commercial liquid smoke products". Food Science & Nutrition. 1 (1): 102–115. doi:10.1002/fsn3.9. PMC 3951573. PMID 24804019.
  6. ^ Melcer, Irving. "Air regulation in the pyrolysis of wood to produce liquid smoke for the treatment of food products". U.S.Pat.No.3,873,741.
  7. ^ "Spirajoule".
  8. ^ "Mokusaku Wood Vinegar".
  9. ^ Underwood, Gary. "Method of using fast pyrolysis liquids as liquid smoke". U.S.Pat.No.4,876,108.
  10. ^ Diebold, James (January 2000). A Review of the Chemical and Physical Mechanisms of the Storage Stability of Fast Pyrolysis Bio-Oils (PDF) (Report). National Renewable Energy Laboratory (NREL). p. 5. NREL/SR-570-27613.
  11. ^ Beglinger, Edward (February 1956). Hardwood-Distillation Industry (Report). United States Department of Agriculture Forest Products Industry. pp. 9–10. Report 738.
  12. ^ Lopez, Diana (2009). "Average structural analysis of tar obtained from pyrolysis of wood". Bioresource Technology. 7 (101): 2458–65. doi:10.1016/j.biortech.2009.11.036. PMID 19962881.
  13. ^ Dainius, Balys. "Method of producing from wood tar a liquid smoke product for use in food processing, and product of said method". U.S.Pat.No. 4, 154, 866.
  14. ^ "Mokusaku Wood Vinegar".
  15. ^ Schneck, James C. (1981). "Liquid Smoke Application to Cured Meat". Reciprocal Meat Conference Proceedings. 34.
  16. ^ Allen, W.M. "Method of Smoking a Comestible Product". U.S.Pat.No.3,503,760.
  17. ^ Chiu, Herman R. "Liquid smoke-impregnation of fibrous food casings". U.S.Pat.No.4,572,098.
  18. ^ Schafer, Ekkehardt. "Food casing". U.S.Pat.No.6,200,613.
  19. ^ Samuels, Brian R. "Film having a liquid absorbed therein". U.S.Pat.No.7,556,845.
  20. ^ "Introduction to Wood Vinegar for Australian Agriculture". Byron Biochar. 5 May 2015.
  21. ^ Tribble, Talmadge. "Antimicrobial treatment and preservation of animal feedstuffs". U.S.Pat.No.4,308,293.
  22. ^ Choi, J.Y. (2009). "Effect of Wood Vinegar on the Performance, Nutrient Digestibility and Intestinal Microflora in Weanling Pigs". Asian-Australasian Journal of Animal Sciences. 22 (2): 267–274. doi:10.5713/ajas.2009.80355.,
  23. ^ Berahim, Zulkarami (November 2011). "Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture". Australian Journal of Crop Science. 5 (12): 1508–1514.
  24. ^ Evaluation of the Health Aspects of Smoke Flavoring Solution and Smoked Yeast Flavoring as Food Ingredients (PDF). FASEB (Report). Life Sciences Research Office FASEB. 1981. SCOGS II-7. Archived from the original (PDF) on 16 November 2016.
  25. ^ "Regulation (EC) No 2065/2003 of the European Parliament and of the Council". Official Journal of the European Union. L 309: 1–8. 10 November 2003.
  26. ^ "Risk assessment of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in contact with Food (AFC) on the Smoke Flavouring Primary Product – FF-B". EFSA Journal. 5 (6): 20r. 2007. doi:10.2903/j.efsa.2007.20r.
  27. ^ "Safety of smoke flavour Primary Product - Scansmoke PB 1110". The EFSA Journal. ON-1056: 1–23. 26 March 2009.
  28. ^ "Safety of smoke flavour Primary Product – SmokEz C-10". The EFSA Journal. 1225: 1–28. 14 May 2009.
  29. ^ "Safety of smoke flavour primary product - Scansmoke SEF7525". The EFSA Journal. 1224: 1–26. 14 May 2009.
  30. ^ "Safety of smoke flavour Primary Product - Zesti Smoke Code 10". The EFSA Journal. ON-982: 1–24. 29 January 2009.
  31. ^ "Safety of smoke flavour Primary Product - Unismoke". The EFSA Journal. ON-983 (1–20). 29 January 2009.
  32. ^ "Scientific Opinion on safety of smoke flavour Primary Product – TRADISMOKE A MAX". EFSA Journal. 8 (1): 1394. 2010. doi:10.2903/j.efsa.2009.1394.
  33. ^ "Safety of smoke flavour Primary Product - Smoke Concentrate 809045". The EFSA Journal. ON-981: 1–19. 29 January 2009.
  34. ^ "Scientific Opinion on safety of smoke flavour Primary Product - Scansmoke R909". EFSA Journal. 8 (1): 1395. 2010. doi:10.2903/j.efsa.2009.1395.
  35. ^ "Safety of smoke flavour Primary Product – SmokEz Enviro 23". The EFSA Journal. 1226: 1–24. 14 May 2009.
  36. ^ "Scientific Opinion on Safety of smoke flavour Primary Product – AM 01". EFSA Journal. 8 (1): 1396. 2010. doi:10.2903/j.efsa.2009.1396.
  37. ^ "Safety of smoke flavour Primary Product - Fumokomp". EFSA Journal. 7 (9): 1343. 2009. doi:10.2903/j.efsa.2009.1343.

Read other articles:

Bagian dari seriIslam Rukun Iman Keesaan Allah Nabi dan Rasul Allah Kitab-kitab Allah Malaikat Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah Garis waktu Muhammad Ahlulbait Sahabat Nabi Khulafaur Rasyidin Khalifah Imamah Ilmu pengetahuan Islam abad pertengahan Penyebaran Islam Penerus Muhammad Budaya dan masyarakat Akademik Akhlak Anak-anak Dakwah Demografi Ekonomi Feminisme Filsafat...

Karya lukis yang dihasilkan Vontangerloo bersama Doesburg. Halaman artikel ini diterjemahkan, sebagian atau seluruhnya, dari halaman di en.wikipedia yang berjudul (Tolong cantumkan nama artikel sumber terjemahan). Lihat pula sejarah suntingan halaman aslinya untuk melihat daftar penulisnya. Georges Vantongerloo (lahir 24 Nopember 1886, Antwerp– meninggal 5 Oktober 1965, Paris) adalah seorang pemahat aliran abstrak, pelukis, dan anggota pendiri grup De Stijl berkebangsaan Belgia.[1] ...

The Congressional NextGen 9-1-1 Caucus, a United States Congress caucus, works to improve the 9-1-1 phone system and emergency response systems.[1] The caucus was headed by Senators Richard Burr (R-NC) and Amy Klobuchar (D-MN) and Representatives Dan Bishop (R-NC) and Anna Eshoo (D-CA) in 2022 History The caucus was formed on February 25, 2003, by Senator Conrad Burns (R-MT), Senator Hillary Clinton (D-NY), Congressman John Shimkus (R-IL) and Congresswoman Eshoo.[2] The origin...

Insurgent group in Rakhine State, Myanmar Arakan Rohingya Salvation ArmyLeadersAtaullah abu Ammar Jununi[1][2]Dates of operation2013 (2013)[3] – present9 October 2016 (2016-10-09) – present (militarily)Active regionsNorthern Rakhine StateBangladesh–Myanmar borderIdeologyRohingya nationalismIslamism (accused, officially denied)[4]Size~200 (January 2018)[5][6]500[7][8]–600[9] (2016–17 esti...

Угочукву Іву Угочукву Іву Особисті дані Повне ім'я Угочукву Крістус Іву Народження 28 листопада 1999(1999-11-28) (24 роки)   Джос, Нігерія Зріст 176 см Вага 73 кг Громадянство  Вірменія Позиція півзахисник Інформація про клуб Поточний клуб «Урарту» Номер 8 Юнацькі клуби 2006–...

  لمعانٍ أخرى، طالع دريك (توضيح). دريك دريك في 2016 معلومات شخصية اسم الولادة أوبري دريك غراهام الميلاد 24 أكتوبر 1986 (العمر 37 سنة) كنداتورونتو  الإقامة تورونتوهيدين هيلز، لوس أنجلوس، كاليفورنيا  الجنسية كندي العرق أمريكي أفريقي [1][2]  الديانة اليهودية[3]...

Allan Wagner Tizón Allan Wagner en 2018. Ministro de Relaciones Exteriores del Perú 15 de febrero de 2021[1]​-28 de julio de 2021Presidente Francisco SagastiPrimer ministro Violeta BermúdezPredecesor Elizabeth AsteteSucesor Héctor Béjar 12 de julio de 2002-19 de diciembre de 2003Presidente Alejandro ToledoPredecesor Diego García-SayánSucesor Manuel Rodríguez Cuadros 28 de julio de 1985-13 de mayo de 1988Presidente Alan García PérezPrimer ministro Luis Alva CastroGuillermo Larc...

Misi diplomatik Laos di dunia. Berikut ini adalah daftar misi diplomatik Laos. Setelah merdeka pada tahun 1950, negara tanpa lautan di kawasan Asia Tenggara ini mulai menjalin hubungan diplomatik dengan negara-negara lain di dunia. Saat ini, Laos masih menjalin hubungan baik dengan negara-negara eks-Blok Timur serta aktif mengembangkan hubungan praktis dengan negara-negara tetangganya. Amerika Kedutaan Besar Laos di Berlin. Konsulat Jenderal Laos di Đà Nẵng. Kedutaan Besar Laos di Moskwa....

Cet article est une ébauche concernant l’Ukraine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Yampil. Iampil (uk) Ямпіль Héraldique Drapeau Administration Pays Ukraine Oblast  Oblast de Khmelnytskyï Code postal 30231 Indicatif tél. +380 3841 Démographie Population 1 829 hab. (2021) Densité 53 794 hab./km2 Géographie Coordonnées 49°...

Logo DisplayPort Konektor DisplayPort Port Mini DisplayPort (tengah) dengan port Thunderbolt 3 (kiri) dan masukan daya (kanan) DisplayPort (disingkat DP) adalah antarmuka tampilan digital yang dikembangkan oleh sebuah konsorsium produsen komputer pribadi dan chip dan distandarisasi oleh Video Electronics Standards Association (VESA). Antarmuka ini terutama digunakan untuk menghubungkan sumber video ke perangkat tampilan seperti monitor komputer, dan juga dapat membawa audio, USB, dan bentuk d...

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أبريل 2020) ثورة المصارعة الحرةثورة المصارعة الحرةRevPro[1]RPW[2]...

Fiscalía General de la República EmblemaLocalizaciónPaís El SalvadorInformación generalSigla FGRJurisdicción El Salvador El SalvadorTipo organización, fiscalía y cargoSede Calle Cortéz Blanco Poniente No. 20, Urb. Madre Selva 3, Antiguo CuscatlánOrganizaciónDirección Rodolfo DelgadoHistoriaFundación 1952www.fgr.gob.sv[editar datos en Wikidata] La Fiscalía General de la República de El Salvador es el organismo que posee, de acuerdo a su ley orgánica, las competen...

This article is about the television animation studio. For the separate live-action television studio, see DreamWorks Television. American television animation studio and production company DreamWorks Animation TelevisionFormerlyDreamWorks Television Animation(1996–1999)TypeDivisionIndustryAnimationTelevision productionPredecessorsDreamWorks TelevisionFounded1996; 27 years ago (1996) (as DreamWorks Television Animation)2013; 10 years ago (2013) (as DreamW...

Town in Dakahlia, EgyptSherbin شربينTownMarkaz of Sherbin (colored Green) in the Dakahlia governorateSherbinLocation in EgyptCoordinates: 31°11′38″N 31°31′28″E / 31.193889°N 31.524444°E / 31.193889; 31.524444Country EgyptGovernorateDakahliaTime zoneUTC+2 (EST)Area code50 Sherbin (Arabic: شربين [ʃeɾˈbiːn]) is a town in Egypt, located in the governorate of Dakahlia.[1] Etymology The etymology isn't fully known, but the gener...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2021) بدأ التلقيح ضد كوفيد-19 في أستراليا يوم الاثنين 22 فبراير 2021، وسيستمر طوال العام بهدف تلقيح جميع الأستراليين الراغبين بذلك قبل عام 2022. سيكون العاملون في الخط ا...

British musician The Right HonourableThe Earl of DurhamBornEdward Richard Lambton (1961-10-19) 19 October 1961 (age 62)Spouses Christabel Mary McEwen ​ ​(m. 1983; div. 1995)​ Catherine FitzGerald ​ ​(m. 1995; div. 2002)​ Marina Hanbury ​(m. 2011)​ Children5Parent(s)Antony LambtonBelinda Blew-JonesRelativesLady Lucinda Lambton (sister)Lady Anne Lambton (sister)Freda...

Type of vinyl phonograph record 12 redirects here. For the unit of measurement equal to twelve inches, see Foot (unit). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Twelve-inch single – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this template message) A twelve-in...

Eurovision Song Contest 2015Country EstoniaNational selectionSelection processEesti Laul 2015Selection date(s)Semi-finals:7 February 201514 February 2015Final:21 February 2015Selected entrantElina Born and Stig RästaSelected songGoodbye to YesterdaySelected songwriter(s)Stig RästaFinals performanceSemi-final resultQualified (3rd, 105 points)Final result7th, 106 pointsEstonia in the Eurovision Song Contest ◄2014 • 2015 • 2016► Estonia participa...

新加坡死囚牢房所在的樟宜監獄 死刑 問題 存廢問題  · 宗教與死刑(英语:Religion and capital punishment)  · 冤案 目前使用死刑的國家和地區 阿富汗(英语:Capital punishment in Afghanistan)  · 白俄羅斯  · 波札那  · 中華人民共和國(罪名  · 死刑犯)  · 埃及(英语:Capital punishment in Egypt)  · 印度(英语:Capital punishment in India)  · 印度尼西亞 &...

Broadmoor TrophySportIce hockeyAwarded forWCHA Tournament ChampionHistoryFirst award1982Most recentMichigan Tech The Broadmoor Trophy is a trophy that has been awarded to the Western Collegiate Hockey Association (WCHA) playoff champion since 1985. The trophy itself dates to 1981, when it was awarded to the WCHA regular season champion for three seasons, from 1981–82 to 1983–84. During that time, the Broadmoor Trophy served as the replacement for the MacNaughton Cup, traditionally awarded...