In membrane biology, fusion is the process by which two initially distinct lipid bilayers merge their hydrophobic cores, resulting in one interconnected structure. If this fusion proceeds completely through both leaflets of both bilayers, an aqueous bridge is formed and the internal contents of the two structures can mix. Alternatively, if only one leaflet from each bilayer is involved in the fusion process, the bilayers are said to be hemifused. In hemifusion, the lipid constituents of the outer leaflet of the two bilayers can mix, but the inner leaflets remain distinct. The aqueous contents enclosed by each bilayer also remain separated.
Fusion is involved in many cellular processes, particularly in eukaryotes since the eukaryotic cell is extensively sub-divided by lipid bilayer membranes. Exocytosis, fertilization of an egg by sperm and transport of waste products to the lysosome are a few of the many eukaryotic processes that rely on some form of fusion. Fusion is also an important mechanism for transport of lipids from their site of synthesis to the membrane where they are needed. Even the entry of pathogens can be governed by fusion, as many bilayer-coated viruses have dedicated fusion proteins to gain entry into the host cell.
There are four fundamental steps in the fusion process, although each of these steps actually represents a complex sequence of events.[1] First, the involved membranes must aggregate, approaching each other to within several nanometers. Second, the two bilayers must come into very close contact (within a few angstroms). To achieve this close contact, the two surfaces must become at least partially dehydrated, as the bound surface water normally present causes bilayers to strongly repel at this distance. Third, a destabilization must develop at one point between the two bilayers, inducing a highly localized rearrangement of the two bilayers. Finally, as this point defect grows, the components of the two bilayers mix and diffuse away from the site of contact. Depending on whether hemifusion or full fusion occurs, the internal contents of the membranes may mix at this point as well.[2]
The exact mechanisms behind this complex sequence of events are still a matter of debate. To simplify the system and allow more definitive study, many experiments have been performed in vitro with synthetic lipid vesicles. These studies have shown that divalent cations play a critical role in the fusion process by binding to negatively charged lipids such as phosphatidylserine, phosphatidylglycerol and cardiolipin.[3] One role on these ions in the fusion process is to shield the negative charge on the surface of the bilayer, diminishing electrostatic repulsion and allowing the membranes to approach each other. This is clearly not the only role, however, since there is an extensively documented difference in the ability of Mg2+ versus Ca2+ to induce fusion. Although Mg2+ will induce extensive aggregation it will not induce fusion, while Ca2+ induces both.[4] It has been proposed that this discrepancy is due to a difference in extent of dehydration. Under this theory, calcium ions bind more strongly to charged lipids, but less strongly to water. The resulting displacement of calcium for water destabilizes the lipid-water interface and promotes intimate interbilayer contact.[5] A recently proposed alternative hypothesis is that the binding of calcium induces a destabilizing lateral tension.[6] Whatever the mechanism of calcium-induced fusion, the initial interaction is clearly electrostatic, since zwitterionic lipids are not susceptible to this effect.[7][8]
In the fusion process, the lipid head group is not only involved in charge density, but can affect dehydration and defect nucleation. These effects are independent of the effects of ions. The presence of the uncharged headgroup phosphatidylethanolamine (PE) increases fusion when incorporated into a phosphatidylcholine bilayer. This phenomenon has been explained by some as a dehydration effect similar to the influence of calcium.[9] The PE headgroup binds water less tightly than PC and therefore may allow close apposition more easily. An alternate explanation is that the physical rather than chemical nature of PE may help induce fusion. According to the stalk hypothesis of fusion, a highly curved bridge must form between the two bilayers for fusion to occur.[10] Since PE has a small headgroup and readily forms inverted micelle phases it should, according to the stalk model, promote the formation of these stalks.[11] Further evidence cited in favor of this theory is the fact that certain lipid mixtures have been shown to only support fusion when raised above the transition temperature of these inverted phases.[12][13] This topic also remains controversial, and even if there is a curved structure present in the fusion process, there is debate in the literature over whether it is a cubic, hexagonal or more exotic extended phase.[14]
The situation is further complicated when considering fusion in vivo since biological fusion is almost always regulated by the action of membrane-associated proteins. The first of these proteins to be studied were the viral fusion proteins, which allow an enveloped virus to insert its genetic material into the host cell (enveloped viruses are those surrounded by a lipid bilayer; some others have only a protein coat). Broadly, there are two classes of viral fusion proteins: acidic and pH-independent.[1]pH independent fusion proteins can function under neutral conditions and fuse with the plasma membrane, allowing viral entry into the cell. Viruses utilizing this scheme included HIV, measles and herpes. Acidic fusion proteins such as those found on influenza are only activated when in the low pH of acidic endosomes and must first be endocytosed to gain entry into the cell.
Eukaryotic cells use entirely different classes of fusion proteins, the best studied of which are the SNAREs. SNARE proteins are used to direct all vesicular intracellular trafficking. Despite years of study, much is still unknown about the function of this protein class. In fact, there is still an active debate regarding whether SNAREs are linked to early docking or participate later in the fusion process by facilitating hemifusion.[16] Even once the role of SNAREs or other specific proteins is illuminated, a unified understanding of fusion proteins is unlikely as there is an enormous diversity of structure and function within these classes, and very few themes are conserved.[17]
Fusion in laboratory practice
In studies of molecular and cellular biology it is often desirable to artificially induce fusion. Although this can be accomplished with the addition of calcium as discussed earlier, this procedure is often not feasible because calcium regulates many other biochemical processes and its addition would be a strong confound. Also, as mentioned, calcium induces massive aggregation as well as fusion. The addition of polyethylene glycol (PEG) causes fusion without significant aggregation or biochemical disruption. This procedure is now used extensively, for example by fusing B-cells with myeloma cells.[18] The resulting “hybridoma” from this combination expresses a desired antibody as determined by the B-cell involved, but is immortalized due to the myeloma component. The mechanism of PEG fusion has not been definitively identified, but some researchers believe that the PEG, by binding a large number of water molecules, effectively decreases the chemical activity of the water and thus dehydrates the lipid headgroups.[19] Fusion can also be artificially induced through electroporation in a process known as electrofusion. It is believed that this phenomenon results from the energetically active edges formed during electroporation, which can act as the local defect point to nucleate stalk growth between two bilayers.[20]
Alternatively, SNARE-inspired model systems can be used to induce membrane fusion of lipid vesicles. In those systems membrane anchored complementary DNA,[21][22][23] PNA,[24] peptides,[25] or other molecules[26] "zip" together and pull the membranes into proximity. Such systems could have practical applications in the future, for example in drug delivery.[27] The probably best investigated system[28] consists of coiled-coil forming peptides of complementary charge (one is typically carrying an excess of positively charged lysins and is thus termed peptide K, and one negatively charged glutamic acids called peptide E).[29] Interestingly, it was discovered that not only the coiled-coil formation between the two peptides is necessary for membrane fusion to occur, but also that the peptide K interacts with the membrane surface and cause local defects.[30]
Assays to measure membrane fusion
There are two levels of fusion: mixing of membrane lipids and mixing of contents. Assays of membrane fusion report either the mixing of membrane lipids or the mixing of the aqueous contents of the fused entities.
Assays for measuring lipid mixing
Assays evaluating lipid mixing make use of concentration dependent effects such as nonradiative energy transfer, fluorescence quenching and pyrene excimer formation.
NBD-Rhodamine Energy Transfer:[31] In this method, membrane labeled with both NBD (donor) and Rhodamine (acceptor) combine with unlabeled membrane. When NBD and Rhodamine are within a certain distance, the Förster resonance energy transfer (FRET) happens. After fusion, resonance energy transfer (FRET) decreases when the average distance between probes increases, while NBD fluorescence increases.
Pyrene Excimer Formation: Pyrene monomer and excimer emission wavelengths are different. The emission wavelength of monomer is around 400 nm and that of excimer is around 470 nm. In this method, membrane labeled with Pyrene combines with unlabeled membrane. Pyrene self associates in membrane and then excited pyrene excites other pyrene. Before fusion, the majority of the emission is excimer emission. After fusion, the distance between probes increases and the ratio of excimer emission decreases.[citation needed]
Octadecyl Rhodamine B Self-Quenching:[32] This assay is based on self-quenching of octadecyl rhodamine B. Octadecyl rhodamine B self-quenching occurs when the probe is incorporated into membrane lipids at concentrations of 1–10 mole percent[33] because Rhodamine dimers quench fluorescence. In this method, membrane labeled Rhodamine combines with unlabeled membrane. Fusion with unlabeled membranes resulting in dilution of the probe, which is accompanied by increasing fluorescence.[34][35] The major problem of this assay is spontaneous transfer.
Assays for measuring content mixing
Mixing of aqueous contents from vesicles as a result of lysis, fusion or physiological permeability can be detected fluorometrically using low molecular weight soluble tracers.
Fluorescence quenching assays with ANTS/DPX:[36][37] ANTS is a polyanionic fluorophore, while DPX is a cationic quencher. The assay is based on the collisional quenching of them. Separate vesicle populations are loaded with ANTS or DPX, respectively. When content mixing happens, ANTS and DPX collide and fluorescence of ANTS monitored at 530 nm, with excitation at 360 nm is quenched. This method is performed at acidic pH and high concentration.
Fluorescence enhancement assays with Tb3+/DPA:[38][39] This method is based on the fact that chelate of Tb3+/DPA is 10,000 times more fluorescent than Tb3+ alone. In the Tb3+/DPA assay, separate vesicle populations are loaded with TbCl3 or DPA. The formation of Tb3+/DPA chelate can be used to indicate vesicle fusion. This method is good for protein free membranes.[citation needed]
Single molecule DNA assay.[40] A DNA hairpin composed of 5 base pair stem and poly-thymidine loop that is labeled with a donor (Cy3) and an acceptor (Cy5) at the ends of the stem was encapsulated in the v-SNARE vesicle. We separately encapsulated multiple unlabeled poly-adenosine DNA strands in the t-SNARE vesicle. If the two vesicles, both ~100 nm in diameter, dock and a large enough fusion pore forms between them, the two DNA molecules should hybridize, opening up the stem region of the hairpin and switching the Förster resonance energy transfer (FRET) efficiency (E) between Cy3 and Cy5 from a high to a low value.
^Zimmerberg, Joshua; Chernomordik, Leonid V (1999). "Membrane fusion". Advanced Drug Delivery Reviews. 38 (3): 197–205. doi:10.1016/S0169-409X(99)00029-0.
^Papahadjopoulos, Demetrios; Nir, Shlomo; Düzgünes, Nejat (1990). "Molecular mechanisms of calcium-induced membrane fusion". Journal of Bioenergetics and Biomembranes. 22 (2): 157–79. doi:10.1007/BF00762944. PMID2139437. S2CID1465571.
^Leventis, Rania; Gagne, Jeannine; Fuller, Nola; Rand, R.; Silvius, J. (1986). "Divalent Cation Induced Fusion and Lipid Lateral Segregation in Phosphatidylcholine-Phosphatidic Acid Vesicles". Biochemistry. 25 (22): 6978–87. doi:10.1021/bi00370a600. PMID3801406.
^Wilschut, Jan; Duezguenes, Nejat; Papahadjopoulos, Demetrios (1981). "Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature". Biochemistry. 20 (11): 3126–33. doi:10.1021/bi00514a022. PMID7248275.
^Chanturiya, A; Scaria, P; Woodle, MC (2000). "The Role of Membrane Lateral Tension in Calcium-Induced Membrane Fusion". The Journal of Membrane Biology. 176 (1): 67–75. doi:10.1007/s00232001076. PMID10882429. S2CID2209769.
^Papahadjopoulos, D.; Poste, G.; Schaeffer, B.E.; Vail, W.J. (1974). "Membrane fusion and molecular segregation in phospholipid vesicles". Biochimica et Biophysica Acta (BBA) - Biomembranes. 352 (1): 10–28. doi:10.1016/0005-2736(74)90175-8. PMID4859411.
^Düzgünes, Nejat; Wilschut, Jan; Fraley, Robert; Papahadjopoulos, Demetrios (1981). "Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles". Biochimica et Biophysica Acta (BBA) - Biomembranes. 642 (1): 182–95. doi:10.1016/0005-2736(81)90148-6. PMID7225377.
^Ellens, Harma; Bentz, Joe; Szoka, Francis C. (1986). "Fusion of phosphatidylethanolamine-containing liposomes and mechanism of L.alpha.-HII phase transition". Biochemistry. 25 (14): 4141–7. doi:10.1021/bi00362a023. PMID3741846.
^Lentz, Barry R. (1994). "Polymer-induced membrane fusion: Potential mechanism and relation to cell fusion events". Chemistry and Physics of Lipids. 73 (1–2): 91–106. doi:10.1016/0009-3084(94)90176-7. PMID8001186.
^Jordan, C. A.; Neumann, E.; Sowers, A. E., eds. (1989). Electroporation and Electrofusion in Cell Biology. Springer. ISBN978-0-306-43043-5.[page needed]
^Struck, Douglas K.; Hoekstra, Dick; Pagano, Richard E. (1981). "Use of resonance energy transfer to monitor membrane fusion". Biochemistry. 20 (14): 4093–9. doi:10.1021/bi00517a023. PMID7284312.
^Hoekstra, Dick; De Boer, Tiny; Klappe, Karin; Wilschut, Jan (1984). "Fluorescence method for measuring the kinetics of fusion between biological membranes". Biochemistry. 23 (24): 5675–81. doi:10.1021/bi00319a002. PMID6098295.
^Wilschut, Jan; Duzgunes, Nejat; Fraley, Robert; Papahadjopoulos, Demetrios (1980). "Studies on the mechanism of membrane fusion: Kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents". Biochemistry. 19 (26): 6011–21. doi:10.1021/bi00567a011. PMID7470445.
American judge (1934–2018) Diana E. MurphySenior Judge of the United States Court of Appeals for the Eighth CircuitIn officeNovember 29, 2016 – May 16, 2018Judge of the United States Court of Appeals for the Eighth CircuitIn officeOctober 11, 1994 – November 29, 2016Appointed byBill ClintonPreceded byJohn R. GibsonSucceeded byDavid StrasChief Judge of the United States District Court for the District of MinnesotaIn office1992–1994Preceded byHarry H. MacLaughlinSuccee...
Historic district in Michigan, United States United States historic placeWayne State University BuildingsU.S. National Register of Historic PlacesU.S. Historic districtMichigan State Historic Site Old Main on WSU campusLocationDetroit, Michigan, U.S.Coordinates42°21′16″N 83°4′2″W / 42.35444°N 83.06722°W / 42.35444; -83.06722Built1895ArchitectMalcomson & Higginbotham; Field, Hinchman & SmithArchitectural styleNeoclassical, Queen AnneNRHP re...
Евнон (лат. Eunones) (до 49 р. — ~55 р.) — династ аорсів Подоння у сер. І ст. н. е. (за часів Котіса І, у подіях 49 р.).[1] Вступ аорсів як спільників Риму призвів до остаточної і безумовної капітуляції Мітрідата та його спільників сіраків у династійній війні у Боспорському
Celeste Poma Información personalNacimiento 10 de noviembre de 1991 (32 años)VogheraNacionalidad ItalianaCaracterísticas físicasAltura 1,65 mPeso 58 kg Información profesionalOcupación Voleibolista Carrera deportivaDeporte VoleibolPerfil de jugadorPosición LíberoEquipos Minerva Volley Pavia Parma Volley Girls Minerva Volley Pavia Unedo Yamamay Busto Arsizio[1] LPM Mondovì[2][editar datos en Wikidata] Celeste Poma (10 de noviembre de 1991) es una juga...
Bupati KolakaPetahanaH. Ahmad Safei, S.H., M.H.sejak 15 Januari 2019Masa jabatan5 tahunDibentuk1960Pejabat pertamaYakub SilondaeSitus webportal.kolakakab.go.id Berikut ini adalah daftar Bupati Kolaka yang menjabat sejak pembentukannya pada tahun 1960. No Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Wakil Bupati 1 Yakub Silondae 1960 1971 1 [1] – 2 Mayjen. (Purn)Andi Opu Lappase 1971 1976 2 3 Letkol. (Purn)Muhammad Nur 1976 1982 3 4 Drs. H. S.Manomang 1982 1988 4 &...
38-ма Гренадерська Дивізія СС «Нібелунги» Емблема дивізії СС «Нібелунги»На службі березень — травень 1945Країна Третій РейхНалежність Адольф ГітлерВид Ваффен-ССТип ГренадериЧисельність ДивізіяГасло Meine Ehre heißt Treue(Моя честь називається вірність)Війни/битви Друга світ...
Clonorchis Clonorchis sinensis under a light microscope. Notice the ovaries. This species is monoecious Klasifikasi ilmiah Kerajaan: Animalia Filum: Platyhelminthes Kelas: Trematoda Ordo: Opisthorchiida Famili: Opisthorchiidae Genus: Clonorchis Spesies: C. sinensis Nama binomial Clonorchis sinensisLooss, 1907 Clonorchis adalah anggota dari Trematoda (Platyhelminthes).[1] Cacing Clonorchis atau chinese liver fluke atau Clonorchis sinensis hidup dalam hati manusia, daur hidupnya ha...
1991 single by Martika Love... Thy Will Be DoneCover art for overseas CD and vinyl releasesSingle by Martikafrom the album Martika's Kitchen B-side Mi tierra Temptation ReleasedJuly 18, 1991 (1991-07-18)StudioPaisley ParkGenrePopLength4:24LabelColumbiaSongwriter(s)Martika, PrinceProducer(s)PrinceMartika singles chronology Water (1990) Love... Thy Will Be Done (1991) Martika's Kitchen (1991) Music videoLove... Thy Will Be Done on YouTube Love... Thy Will Be Done is the first sin...
Formula Pacific was a motor racing category which was used in the Pacific Basin area from 1977 to 1982. It specified a single-seat, open-wheeler chassis powered by a production-based four-cylinder engine of under 1600cc capacity.[1] The formula was based on Formula Atlantic, with provision made for the use of Japanese engines. The category was superseded in 1983 by Formula Mondial, which was devised by the FIA to replace both Formula Atlantic and Formula Pacific. Introduction The Form...
Турнір другої ліги Десятого чемпіонату України з футболу 2000—2001 проводився з 30 липня 2000 по 26 червня 2001 року. Зміст 1 Учасники турніру 2 Друга ліга 3 Група А 3.1 Підсумкова таблиця 3.2 Найкращі бомбардири 3.3 Результати матчів 4 Група Б 4.1 Підсумкова таблиця 4.2 Найкращі бомбардири...
تحتاج هذه المقالة إلى تهذيب لتتناسب مع دليل الأسلوب في ويكيبيديا. فضلاً، ساهم في تهذيب هذه المقالة من خلال معالجة مشكلات الأسلوب فيها. بلاغة القرآن من أسباب إعجازه، والمقصود بها: فصاحة مفرداته، ومتانة نظمه، وانتظام دلالته، واستيفاؤه للمعاني، وحسن بيانه، ودقة تعبيره.[1]...
Một phần của loạt bài vềẤn Độ giáo Tín đồ Lịch sử Giáo lý Thế giới quan Vũ trụ học Ấn Độ giáo Niên đại học Ấn Độ giáo Thần thoại học Ấn Độ giáo Thực thể tối cao Đại ngã Om Thần Ishvara Các vị thần Thần và giới tính Trần thế Tự ngã Ảo ảnh Nghiệp Luân hồi Purusharthas Pháp Artha Dục Thoát Luân lý học Niti shastra Yamas Niyama Ahimsa Asteya Aparigraha Brahmacharya Satya Damah Dayā Ak...
A Bride for Rip Van WinklePoster rilis teatrikal JepangNama lainJepangリップヴァンウィンクルの花嫁HepburnRippu van winkuru no hanayome Sutradara Shunji Iwai Produser Shunji Iwai Tomoyuki Miyagawa Aki Mizuno Muneyuki Kii Ditulis oleh Shunji Iwai SkenarioShunji IwaiBerdasarkanA Bride for Rip Van Winkleoleh Shunji IwaiPemeran Haru Kuroki Gō Ayano Cocco Penata musikMako KuwabaraSinematograferChigi KanbePenyuntingShunji IwaiPerusahaanproduksiRockwell EyesDistributor Toei...
Республика Кипргреч. Κυπριακή Δημοκρατία, тур. Kıbrıs Cumhuriyeti Вторая почтовая марка 1880 года, с надпечаткой на марке Великобритании для использования на Кипре, номиналом в 1 пенни (Mi #2; Yt #2; SG #2)[^] История почты Член ВПС с 23 ноября 1961 Cyprus Post[en] Офис почты Headquarters, 100, Prodromou str, 1...
Indian business woman Beena KannanOccupationBusinessKnown forSeemattiSpouseKannanChildren3Websitewww.beenakannan.com Beena Kannan is an Indian business woman, who is the CEO and lead designer of Seematti textiles.[1] Career After university, she joined the family textile retailing business 'Seematti' in 1980, working with her father and husband. Seematti was started by her pioneering grandfather, the famous textile king Veeriah Reddiar.[2] She became one of the most notic...
Lego theme Lego ElvesSubjectElvesLicensed fromThe Lego GroupAvailability2015–2019Total sets42[1]CharactersEmily Jones, Naida, Farran, Azari, Aira and Sophie JonesOfficial websiteTV SeriesLego Elves Lego Elves: Secrets of Elvendale Lego Elves (stylized as LEGO Elves) was a Lego product line produced by The Lego Group that was launched in 2015.[2][3] It was accompanied by the Lego Elves animated television series and webisode series that began with a min...
Criminal groups in India The Chaddi Baniyan Gangs (also known as the Kachcha Baniyan Gangs) are criminal groups operating in parts of India.[1] Gang members perform attacks while wearing only their underwear, which is the source of their name (in the local languages, chaddi, or kachcha are underpants and baniyan is undershirts). In addition to wearing undergarments, members wear face masks and cover themselves in oil or mud to protect their identities.[2] Attacks The gangs ten...
Japanese manga series and its anime adaptation Corpse PrincessShikabane Hime manga volume 1 cover.屍姫(Shikabane Hime)GenreAction, supernatural,[1] thriller[2] MangaWritten byYoshiichi AkahitoPublished bySquare EnixEnglish publisherNA: Yen PressMagazineMonthly Shōnen GanganDemographicShōnenOriginal runApril 12, 2005 – August 12, 2014Volumes23 Anime television seriesDirected byMasahiko MurataProduced byKeiichi KashiwadaTomoko KawasakiNobuyuki Kurashige...
This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Declan O'Sullivan – news · newspapers · books · scholar · JSTOR (March 2008) (Learn how and when to remove this template message) Kerry Gaelic foo...