Lie bialgebra

In mathematics, a Lie bialgebra is the Lie-theoretic case of a bialgebra: it is a set with a Lie algebra and a Lie coalgebra structure which are compatible.

It is a bialgebra where the multiplication is skew-symmetric and satisfies a dual Jacobi identity, so that the dual vector space is a Lie algebra, whereas the comultiplication is a 1-cocycle, so that the multiplication and comultiplication are compatible. The cocycle condition implies that, in practice, one studies only classes of bialgebras that are cohomologous to a Lie bialgebra on a coboundary.

They are also called Poisson-Hopf algebras, and are the Lie algebra of a Poisson–Lie group.

Lie bialgebras occur naturally in the study of the Yang–Baxter equations.

Definition

A vector space is a Lie bialgebra if it is a Lie algebra, and there is the structure of Lie algebra also on the dual vector space which is compatible. More precisely the Lie algebra structure on is given by a Lie bracket and the Lie algebra structure on is given by a Lie bracket . Then the map dual to is called the cocommutator, and the compatibility condition is the following cocycle relation:

where is the adjoint. Note that this definition is symmetric and is also a Lie bialgebra, the dual Lie bialgebra.

Example

Let be any semisimple Lie algebra. To specify a Lie bialgebra structure we thus need to specify a compatible Lie algebra structure on the dual vector space. Choose a Cartan subalgebra and a choice of positive roots. Let be the corresponding opposite Borel subalgebras, so that and there is a natural projection . Then define a Lie algebra

which is a subalgebra of the product , and has the same dimension as . Now identify with dual of via the pairing

where and is the Killing form. This defines a Lie bialgebra structure on , and is the "standard" example: it underlies the Drinfeld-Jimbo quantum group. Note that is solvable, whereas is semisimple.

Relation to Poisson–Lie groups

The Lie algebra of a Poisson–Lie group G has a natural structure of Lie bialgebra. In brief the Lie group structure gives the Lie bracket on as usual, and the linearisation of the Poisson structure on G gives the Lie bracket on (recalling that a linear Poisson structure on a vector space is the same thing as a Lie bracket on the dual vector space). In more detail, let G be a Poisson–Lie group, with being two smooth functions on the group manifold. Let be the differential at the identity element. Clearly, . The Poisson structure on the group then induces a bracket on , as

where is the Poisson bracket. Given be the Poisson bivector on the manifold, define to be the right-translate of the bivector to the identity element in G. Then one has that

The cocommutator is then the tangent map:

so that

is the dual of the cocommutator.

See also

References

Read other articles:

3D graphics API developed by 3dfx Interactive This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Glide API – news · newspapers · books · scholar · JSTOR (August 2017) (Learn how and when to remove this template message) GlideOriginal author(s)3dfx InteractiveStable release3.10.00.30303 / September 2, ...

 

محمود أبو العيون معلومات شخصية تاريخ الميلاد سنة 1882  تاريخ الوفاة سنة 1951 (68–69 سنة)  تعديل مصدري - تعديل   يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يون

 

Religión en Perú (2023)Religion[1]​ Gráfico no disponible temporalmente debido a problemas técnicos.      Catolicismo (58%)      Sin religión (15%)      Protestantismo (12%)      Otros cristianos (6%)      Otras religiones (5%)      Prefiere no decirlo (5%) La religión en Perú tradicionalmente está relacionada al sincretismo religi...

Westliches Zwillingsköpfl Vordergrund: Westliches (links) und Östliches (rechts) Zwillingsköpfl, vom Klockerkarkopf aus gesehen Höhe 2835 m ü. A. Lage Salzburg, Österreich/Südtirol, Italien Gebirge Hauptkamm, Zillertaler Alpen Dominanz 0,18 km → Klockerkarkopf Schartenhöhe 30 m ↓ Scharte zum Klockerkarkopf Koordinaten 47° 5′ 31″ N, 12° 11′ 9″ O47.09194444444412.1858333333332835Koordinaten: 47° 5′...

 

Alexander von Oheimb Alexander Wilhelm Heinrich August von Oheimb (* 19. Januar 1820 in Enzen; † 8. August 1903 auf Gut Oheimb, Holzhausen[1]) war ein deutscher Verwaltungsjurist und Abgeordneter in Preußen und dem Fürstentum Lippe. Inhaltsverzeichnis 1 Leben 1.1 Werdegang 1.2 Abgeordneter 1.3 Familie 2 Ehrungen 3 Siehe auch 4 Literatur 5 Weblinks 6 Einzelnachweise Leben Alexander von Oheimb wurde 1820 als Mitglied einer Familie des niedersächsischen Uradels in Enzen im Fürstent...

 

George Child VilliersFonctionsMembre du 15e Parlement du Royaume-Uni15e Parlement du Royaume-Uni (d)Cirencester (d)29 juillet 1847 - 1er juillet 1852Membre du 14e Parlement du Royaume-Uni14e Parlement du Royaume-Uni (d)Cirencester (d)2 août 1844 - 23 juillet 1847Membre du 14e Parlement du Royaume-Uni14e Parlement du Royaume-Uni (d)Weymouth and Melcombe Regis (en)29 juin 1841 - 4 avril 1842Membre du 13e Parlement du Royaume-Uni13e Parlement du Royaume-Uni (d)Weymouth and Melcombe Regis (en)24...

Hipertensi jas putihJas putihInformasi umumNama lainSindrom jas putih Hipertensi jas putih, juga dikenal dengan sebutan sindrom jas putih, adalah jenis hipertensi labil[1] yang terjadi ketika tekanan darah seseorang melonjak saat bertemu dengan tenaga medis (seperti dokter) meskipun mereka tidak mengalami hal ini dalam konteks lain.[2] Diyakini hipertensi ini diakibatkan oleh kecemasan yang ditimbulkan saat mengunjungi layanan kesehatan.[3] Diagnosis Hipertensi jas put...

 

Bardengesang auf Gibraltar: O Calpe! Dir donnert's am Fuße (K. Anh. 25 / 386d) is the title of a fragment for voice and piano composed by Wolfgang Amadeus Mozart in 1782. It was created to celebrate the British Royal Navy's successful relief of the besieged garrison of Gibraltar in October 1782, during the Great Siege of Gibraltar. A British fleet had evaded a joint Franco-Spanish force to deliver supplies and reinforcements to the garrison before returning home safely – an achievement tha...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. Sekolah Tinggi Ilmu Syari’ah Ilmu Syari’ah (STIS) Syarif Abdurrahman Pontianak merupakan satu-satunya Perguruan Tinggi Agama Islam di provinsi Kalimantan Barat, Indonesia, yang memiliki Program Studi Ahwal As-Syakhshiyah pada Jurusan Syari’ah. Kebera...

1964 United States Senate elections ← 1962 November 3, 1964 1966 → 35 of the 100 seats in the United States Senate51 seats needed for a majority   Majority party Minority party   Leader Mike Mansfield Everett Dirksen Party Democratic Republican Leader since January 3, 1961 January 3, 1959 Leader's seat Montana Illinois Seats before 66 34 Seats after 68 32 Seat change 2 2 Popular vote 30,786,035[1][a] 23,171,991[...

 

Antonín Dvořák's American String Quartet (Op. 96) The last page of the autograph score with Dvořák's inscription: Finished on 10 June 1893 in Spillville. Thanks God. I'm satisfied. It went quickly. The String Quartet No. 12 in F major, Op. 96, nicknamed the American Quartet, is the 12th string quartet composed by Antonín Dvořák. It was written in 1893, during Dvořák's time in the United States. The quartet is one of the most popular in the chamber music repertoire. Composition ...

 

Seorang pelayan kopi, dari wilayah Utsmaniyah di Kairo, Mesir pada tahun 1857. Sebuah rumah kopi di Damaskus. Sebuah Rumah kopi Wina Les Deux Magots di Paris, sempat menjadi tempat perkumpulan para intelektual Prancis yang terkenal Sebuah kafe kopi di Melbourne. Kota tersebut dikatakan memiliki beberapa kopi terbaik di dunia. Budaya kopi mendeskripsikan atmosfer sosial atau serangkaian perilaku sosial terkait yang sangat bergantung pada kopi, sebagian besar sebagai sebuah lubrikan sosial. Ist...

Fibula Meldorf adalah sebuah fibula berjenis pegas khas Jermanik yang ditemukan di Meldorf, Schleswig-Holstein, Jerman Barat pada tahun 1979. Meskipun keadaan pasti dari pemulihan fibula tidak diketahui, diperkirakan berasal dari kuburan kremasi, mungkin dari wanita. Berdasarkan rupa tulisan, fibula tersebut diperkirakan dibuat pada paruh pertama abad ke-1 M, dan mungkin memuat tulisan alfabet Rune tertua.[1] Tulisan Tulisan tersebut termuat pada bagian bawah fibula dan ditulis dengan...

 

رابح بيطاط رئيس الدولة الجزائرية الثالثفترة مؤقتة في المنصب27 ديسمبر 1978 – 9 فبراير 1979(شهرًا واحدًا و13 يومًا) هواري بومدين الشاذلي بن جديد نائب الرئيس في أول حكومة أحمد بن بلة في المنصب27 سبتمبر 1962 – نوفمبر 1963 الرئيس *فرحات عباس أحمد بن بلة وزير النقل في المنصب21 يوليو 1970 – 5 ما...

 

Венера Капітолійська Час створення: 2 століття до н. е.Висота: 193 смМатеріал: мармурЖанр: ню і міфологічна скульптураdЗберігається: Рим, ІталіяМузей: Капітолійські музеї Венера Капітолійська (італ. Venere capitolina) — тип статуї Венери, один з різновидів типу «Венера Сор...

Bilateral relationsBelgium–Russia relations Belgium Russia Belgium–Russia relations are the bilateral foreign relations between the two countries, Belgium and Russia. Russia has an embassy in Brussels and a consulate-general in Antwerp, whilst Belgium has an embassy in Moscow and a Consulate General in Saint Petersburg. Both countries are full members of the Council of Europe and the Organization for Security and Co-operation in Europe. History President Vladimir Putin with former King Al...

 

Kenai-Fjords-Nationalpark Kenai-Fjords-NationalparkKenai-Fjords-Nationalpark Kenai-Fjords-Nationalpark (Alaska) 59.983888888889-149.78277777778Koordinaten: 59° 59′ 2″ N, 149° 46′ 58″ W Lage: Alaska, Vereinigte Staaten Nächste Stadt: Seward (Alaska) Fläche: 2.709,98 km² Gründung: 2. Dezember 1980 Besucher: 321.596 (2018) Adresse: Kenai Fjords National Park i3i6 Der Kenai-Fjords-Nationalpark (englisch Kenai Fjords National Park) ist ein Nati...

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2008) (Learn how and when to remove this template message) This is about the Irish businessman. For the college basketball coach, go to William J. Young (coach). W.J. Young family William John Young (February 27, 1827[1] at Belfast, Ireland – June 8, 1896[2] at Clinton, Iowa) was the f...

American basketball player (born 1958) For other people named Herbert Williams, see Herbert Williams (disambiguation). Herb WilliamsPersonal informationBorn (1958-02-16) February 16, 1958 (age 65)Columbus, Ohio, U.S.NationalityAmericanListed height6 ft 10 in (2.08 m)Listed weight262 lb (119 kg)Career informationHigh schoolMarion-Franklin (Columbus, Ohio)CollegeOhio State (1977–1981)NBA draft1981: 1st round, 14th overall pickSelected by the Indiana PacersPlaying...

 

Nonfiction book by Gary J. Bass The Blood Telegram: Nixon, Kissinger, and a Forgotten Genocide AuthorGary J. BassCountryUnited StatesLanguageEnglishGenreHistoryPublisherAlfred A. KnopfPublication date2013Media typePrint (hardcover and paperback)Pagesxxiv, 499 (first edition)ISBN978-0-307-70020-9 The Blood Telegram: Nixon, Kissinger, and a Forgotten Genocide is a 2013 book by American journalist and academic Gary J. Bass[1] about The Blood telegram, a state department dissent memo...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!