Lagrange's identity

In algebra, Lagrange's identity, named after Joseph Louis Lagrange, is:[1][2] which applies to any two sets {a1, a2, ..., an} and {b1, b2, ..., bn} of real or complex numbers (or more generally, elements of a commutative ring). This identity is a generalisation of the Brahmagupta–Fibonacci identity and a special form of the Binet–Cauchy identity.

In a more compact vector notation, Lagrange's identity is expressed as:[3] where a and b are n-dimensional vectors with components that are real numbers. The extension to complex numbers requires the interpretation of the dot product as an inner product or Hermitian dot product. Explicitly, for complex numbers, Lagrange's identity can be written in the form:[4] involving the absolute value.[5][6]

Since the right-hand side of the identity is clearly non-negative, it implies Cauchy's inequality in the finite-dimensional real coordinate space Rn and its complex counterpart Cn.

Geometrically, the identity asserts that the square of the volume of the parallelepiped spanned by a set of vectors is the Gram determinant of the vectors.

Lagrange's identity and exterior algebra

In terms of the wedge product, Lagrange's identity can be written

Hence, it can be seen as a formula which gives the length of the wedge product of two vectors, which is the area of the parallelogram they define, in terms of the dot products of the two vectors, as

Lagrange's identity and vector calculus

In three dimensions, Lagrange's identity asserts that if a and b are vectors in R3 with lengths |a| and |b|, then Lagrange's identity can be written in terms of the cross product and dot product:[7][8]

Using the definition of angle based upon the dot product (see also Cauchy–Schwarz inequality), the left-hand side is where θ is the angle formed by the vectors a and b. The area of a parallelogram with sides |a| and |b| and angle θ is known in elementary geometry to be so the left-hand side of Lagrange's identity is the squared area of the parallelogram. The cross product appearing on the right-hand side is defined by which is a vector whose components are equal in magnitude to the areas of the projections of the parallelogram onto the yz, zx, and xy planes, respectively.

Seven dimensions

For a and b as vectors in R7, Lagrange's identity takes on the same form as in the case of R3[9]

However, the cross product in 7 dimensions does not share all the properties of the cross product in 3 dimensions. For example, the direction of a × b in 7-dimensions may be the same as c × d even though c and d are linearly independent of a and b. Also the seven-dimensional cross product is not compatible with the Jacobi identity.[9]

Quaternions

A quaternion p is defined as the sum of a scalar t and a vector v:

The product of two quaternions p = t + v and q = s + w is defined by

The quaternionic conjugate of q is defined by and the norm squared is

The multiplicativity of the norm in the quaternion algebra provides, for quaternions p and q:[10]

The quaternions p and q are called imaginary if their scalar part is zero; equivalently, if

Lagrange's identity is just the multiplicativity of the norm of imaginary quaternions, since, by definition,

Proof of algebraic form

The vector form follows from the Binet-Cauchy identity by setting ci = ai and di = bi. The second version follows by letting ci and di denote the complex conjugates of ai and bi, respectively,

Here is also a direct proof.[11] The expansion of the first term on the left side is:

which means that the product of a column of as and a row of bs yields (a sum of elements of) a square of abs, which can be broken up into a diagonal and a pair of triangles on either side of the diagonal.

The second term on the left side of Lagrange's identity can be expanded as:

which means that a symmetric square can be broken up into its diagonal and a pair of equal triangles on either side of the diagonal.

To expand the summation on the right side of Lagrange's identity, first expand the square within the summation:

Distribute the summation on the right side,

Now exchange the indices i and j of the second term on the right side, and permute the b factors of the third term, yielding:

Back to the left side of Lagrange's identity: it has two terms, given in expanded form by Equations (1) and (2). The first term on the right side of Equation (2) ends up canceling out the first term on the right side of Equation (1), yielding

which is the same as Equation (3), so Lagrange's identity is indeed an identity, Q.E.D.

Proof of Lagrange's identity for complex numbers

Normed division algebras require that the norm of the product is equal to the product of the norms. Lagrange's identity exhibits this equality. The product identity used as a starting point here, is a consequence of the norm of the product equality with the product of the norm for scator algebras. This proposal, originally presented in the context of a deformed Lorentz metric, is based on a transformation stemming from the product operation and magnitude definition in hyperbolic scator algebra.[12] Lagrange's identity can be proved in a variety of ways.[4]

Let be complex numbers and the overbar represents complex conjugate.

The product identity reduces to the complex Lagrange's identity when fourth order terms, in a series expansion, are considered.

In order to prove it, expand the product on the LHS of the product identity in terms of series up to fourth order. To this end, recall that products of the form can be expanded in terms of sums as where means terms with order three or higher in .

The two factors on the RHS are also written in terms of series

The product of this expression up to fourth order is Substitution of these two results in the product identity give

The product of two conjugates series can be expressed as series involving the product of conjugate terms. The conjugate series product is thus

The terms of the last two series on the LHS are grouped as in order to obtain the complex Lagrange's identity:

In terms of the moduli,

Lagrange's identity for complex numbers has been obtained from a straightforward product identity. A derivation for the reals is obviously even more succinct. Since the Cauchy–Schwarz inequality is a particular case of Lagrange's identity,[4] this proof is yet another way to obtain the CS inequality. Higher order terms in the series produce novel identities.

See also

References

  1. ^ Eric W. Weisstein (2003). CRC concise encyclopedia of mathematics (2nd ed.). CRC Press. ISBN 1-58488-347-2.
  2. ^ Robert E Greene; Steven G Krantz (2006). "Exercise 16". Function theory of one complex variable (3rd ed.). American Mathematical Society. p. 22. ISBN 0-8218-3962-4.
  3. ^ Vladimir A. Boichenko; Gennadiĭ Alekseevich Leonov; Volker Reitmann (2005). Dimension theory for ordinary differential equations. Vieweg+Teubner Verlag. p. 26. ISBN 3-519-00437-2.
  4. ^ a b c J. Michael Steele (2004). "Exercise 4.4: Lagrange's identity for complex numbers". The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities. Cambridge University Press. pp. 68–69. ISBN 0-521-54677-X.
  5. ^ Greene, Robert E.; Krantz, Steven G. (2002). Function Theory of One Complex Variable. Providence, R.I.: American Mathematical Society. p. 22, Exercise 16. ISBN 978-0-8218-2905-9.
  6. ^ Palka, Bruce P. (1991). An Introduction to Complex Function Theory. Berlin, New York: Springer-Verlag. p. 27, Exercise 4.22. ISBN 978-0-387-97427-9..
  7. ^ Howard Anton; Chris Rorres (2010). "Relationships between dot and cross products". Elementary Linear Algebra: Applications Version (10th ed.). John Wiley and Sons. p. 162. ISBN 978-0-470-43205-1.
  8. ^ Pertti Lounesto (2001). Clifford algebras and spinors (2nd ed.). Cambridge University Press. p. 94. ISBN 0-521-00551-5.
  9. ^ a b Door Pertti Lounesto (2001). Clifford algebras and spinors (2nd ed.). Cambridge University Press. ISBN 0-521-00551-5. See particularly § 7.4 Cross products in R7, p. 96.
  10. ^ Jack B. Kuipers (2002). "§5.6 The norm". Quaternions and rotation sequences: a primer with applications to orbits. Princeton University Press. p. 111. ISBN 0-691-10298-8.
  11. ^ See, for example, Frank Jones, Rice University, page 4 in Chapter 7 of a book still to be published.
  12. ^ M. Fernández-Guasti, Alternative realization for the composition of relativistic velocities, Optics and Photonics 2011, vol. 8121 of The nature of light: What are photons? IV, pp. 812108–1–11. SPIE, 2011.

Read other articles:

Den här artikeln behöver fler eller bättre källhänvisningar för att kunna verifieras. (2021-06) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. Detta är en lista över tidigare åkattraktioner på nöjesfältet Gröna Lund i Stockholm. Tidigare åkattraktioner på Gröna Lund i Stockholm Sorterade alfabetiskt: Åkattraktion Öppnad år Stängd...

 

Fred Schmidt Född23 oktober 1943[1] (80 år)Evanston, USAMedborgare iUSAUtbildad vidIndiana University Bloomington SysselsättningSimmareRedigera Wikidata Fred Schmidt Simning, herrar Nation: USA Olympiska spel Guld Tokyo 1964 4 x 100 m medley Brons Tokyo 1964 200 m fjäril Frederick Weber Fred Schmidt, född 23 oktober 1943 i Evanston i Illinois, är en amerikansk före detta simmare. Schmidt blev olympisk guldmedaljör på 4 x 100 meter medley vid sommarspelen 1964 i Tokyo.[...

 

Non-Fiction Book First edition (publ. William Morrow) The Light of Days: The Untold Story of Women Resistance Fighters in Hitler's Ghettos is a 2021 non-fiction book by Canadian writer Judy Batalion.[1][2][3] Reception Kirkus Reviews called the book a resounding history of Jewish women who fought the German invaders in World War II and a welcome addition to the literature of the Shoah and of anti-Nazi resistance.[4] Diane Cole of the Wall Street Journal wrote t...

The Clash of Civilizations and the Remaking of World Order PengarangSamuel P. HuntingtonPenerbitSimon & SchusterTanggal terbit1996ISBNISBN 0-684-84441-9OCLC38269418 Benturan peradaban atau clash of civilizations (CoC) adalah teori bahwa identitas budaya dan agama seseorang akan menjadi sumber konflik utama di dunia pasca-Perang Dingin. Teori ini dipaparkan oleh ilmuwan politik Samuel P. Huntington dalam pidatonya tahun 1992[1] di American Enterprise Institute, lalu dikembangk...

 

CC Sabathia Informações pessoais Nome completo Carsten Charles Sabathia Data de nasc. 21 de julho de 1980 (43 anos) Local de nasc. Vallejo, Califórnia,  Estados Unidos Altura 2,01 m Peso 131 kg Informações profissionais Número 52 Posição Arremessador ERA 3.74 Vitórias-derrotas 251–161 Rebate Esquerdo Lança Esquerdo Strikeouts 3093 Clubes principais 2001-0820082009-2019 Cleveland Indians Milwaukee Brewers New York Yankees Carsten Charles CC Sabathia (21 de julho de 1...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaim...

2018 Serbian film This article needs a plot summary. Please add one in your own words. (September 2020) (Learn how and when to remove this template message) South WindDirected byMiloš AvramovićStarringMiloš Biković Nebojša GlogovacMilos TimotijevicRelease date 25 August 2018 (2018-08-25) [1]CountrySerbiaLanguagesSerbian, BulgarianBudget360,000€Box office2,365,712€ South Wind (Serbian: Јужни ветар, romanized: Južni vetar) is a 2018 Serbian crime ...

 

Alexandra QuinnQuinn di Las Vegas, Januari 2000LahirDiane Purdie Stewart[1][2][3][4]25 Maret 1973 (umur 50)[1][2][3]Hamilton, Ontario, Kanada[1]Nama lainAlexandra, Alexanderia Quinn, Alexandria Quinn, Dianne Colazzo[5]Tahun aktif1989–1991, 2000–2006Tinggi5 ft 8 in (1,73 m)[6] Alexandra Quinn (lahir Diane Purdie Stewart[4] pada 25 Maret 1973)[3] adalah mantan aktris...

 

Mitsubishi AAM-4 Mitsubishi AAM-4 Jenis Peluru kendali udara ke udara Negara asal Japan Sejarah pemakaian Masa penggunaan 1999 Sejarah produksi Produsen Mitsubishi Electric Mitsubishi AAM-4 (Rudal udara-ke-udara Tipe 99, 99式空対空诱导弾(99 Shiki Kūtaikū Yūdōdan)) adalah rudal jarak menengah yang dipandu radar aktif udara-ke-udara yang dikembangkan di Jepang dan dimaksudkan untuk menggantikan rudal radar homing semi-aktif AIM-7 Sparrow dalam pelayanan. Peluru kendali ini ...

The Encyclopedia of Yugoslavia (Serbo-Croatian: Enciklopedija Jugoslavije / Енциклопедија Југославије) was the national encyclopedia of the Socialist Federal Republic of Yugoslavia. It was published by the Yugoslav Lexicographical Institute (Zagreb) under the direction of Miroslav Krleža. Lawrence S. Thompson reviewed the work as follows: The first volume (A-Bosk) of the new Encyclopedia of Yugoslavia deserves attention not only as an important general reference work ...

 

В статті наведений перелік пам'яток історії та культури в місті Київ, які включені до третьої частини книги «Київ» Зводу пам'яток історії та культури України, що була видана у 2011 році. Інші частини: частина 1 (А—Л) (1999), частина 2 (М—С) (2004). Умовні позначення типу пам'ятки: а ...

 

المقالات في هذا التصنيف يجب نقلها إلى التصنيفات الفرعية عندما لا تكون مقالات أساسية. يحتاج هذا التصنيف لمتابعة دائمة لتجنب امتلائه بعدد كبير من المقالات. يستحسن أن يحتوي هذا التصنيف على تصنيفات فرعية فقط. البرامج التلفزيونيَّة التي تقع أحداثها في الولايات المُتحدة الأمري...

Pour les articles homonymes, voir Rue de Tanger. Cet article est une ébauche concernant Rouen. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Rue de Tanger Situation Coordonnées 49° 26′ 48″ nord, 1° 04′ 36″ est Pays France Région Normandie Département Seine-Maritime Ville Rouen Quartier(s) Pasteur-Madeleine Début Avenue du Mont-Riboudet Fin Rue Stanislas-Girardin Morp...

 

Streaming mystery television series (2022) Three PinesGenre Mystery Detective Crime drama Created byEmilia di GirolamoBased onInspector Gamacheby Louise PennyStarring Alfred Molina Rossif Sutherland Elle-Máijá Tailfeathers Tantoo Cardinal Clare Coulter Sarah Booth Anna Tierney ComposerToydrumCountry of origin Canada United Kingdom Original languages French English No. of seasons1No. of episodes8ProductionExecutive producers Andy Harries Sharon Hughff John Phillips Sam Donovan Emilia di Giro...

 

МиГ-29К МиГ-29К (изд. «9-31») во время показательного выступления на авиасалоне МАКС-2003 Тип палубный многоцелевой истребитель Разработчик ОКБ МиГ Производитель МАПО им. П. В. Дементьева Первый полёт МиГ-29К: 23 июня 1988 годаМиГ-29КУБ: 20 января 2007 года[1] Статус эксплуатируется, ...

Indonesian stew dish GulaiA plate of chicken gulai.TypeStewCourseMainPlace of originIndonesia[1][2][3][4][5]Region or stateSumatra[5]Associated cuisineIndonesia,[1] Malaysia,[6][7] Singapore, Brunei, and Southern ThailandServing temperatureHot and room temperature  Media: Gulai Gulai is a class of spicy and rich stew commonly found in Indonesia,[4] Malaysia and Singapore. The main ingredients of this dish...

 

Map of the six major protectorates during Tang dynasty. The Protectorates are marked as Anxi, Anbei, Andong. The Tang dynasty in Inner Asia was the expansion of the Tang dynasty's realm in Inner Asia in the 7th and, to a lesser degree, the 8th century AD, in the Tarim Basin (Southern Xinjiang), the Mongolian Plateau, and portions of Central Asia. Wars were fought against the Gokturk Empires and Xueyantuo, but also against many states of Central Asia. This expansion was not steady; for example...

 

العلاقات الإكوادورية البليزية الإكوادور بليز   الإكوادور   بليز تعديل مصدري - تعديل   العلاقات الإكوادورية البليزية هي العلاقات الثنائية التي تجمع بين الإكوادور وبليز.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...

School district in Iowa Orient-Macksburg Community School DistrictLocationOrient, IowaAdair, Madison, Adams, and Union counties United StatesCoordinates41.200590, -94.414181District informationTypePublicGradesPreK-12Established1960SuperintendentDr. Bill SzakacsBudget$3,303,000 (2017-18)[1]NCES District ID1921810 [1]Students and staffStudents161 (2019-20) [1]Teachers15.12 FTE [1]Staff20.26 FTE [1]Student–teacher ratio10.65 [1]Athletic conferenc...

 

Culinary traditions of Singapore A hawker centre in Smith Street, Singapore. Eating in a hawker centre is part of the prevalent culinary culture of Singaporean people. Singaporean cuisine is derived from several ethnic groups in Singapore and has developed through centuries of political, economic, and social changes in the cosmopolitan city-state. Influences include the cuisines of the Malays/Indonesians, the Chinese and the Indians as well as, Peranakan and Western traditions (particularly E...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!