Krull's principal ideal theorem

In commutative algebra, Krull's principal ideal theorem, named after Wolfgang Krull (1899–1971), gives a bound on the height of a principal ideal in a commutative Noetherian ring. The theorem is sometimes referred to by its German name, Krulls Hauptidealsatz (from Haupt- ("Principal") + ideal + Satz ("theorem")).

Precisely, if R is a Noetherian ring and I is a principal, proper ideal of R, then each minimal prime ideal containing I has height at most one.

This theorem can be generalized to ideals that are not principal, and the result is often called Krull's height theorem. This says that if R is a Noetherian ring and I is a proper ideal generated by n elements of R, then each minimal prime over I has height at most n. The converse is also true: if a prime ideal has height n, then it is a minimal prime ideal over an ideal generated by n elements.[1]

The principal ideal theorem and the generalization, the height theorem, both follow from the fundamental theorem of dimension theory in commutative algebra (see also below for the direct proofs). Bourbaki's Commutative Algebra gives a direct proof. Kaplansky's Commutative Rings includes a proof due to David Rees.

Proofs

Proof of the principal ideal theorem

Let be a Noetherian ring, x an element of it and a minimal prime over x. Replacing A by the localization , we can assume is local with the maximal ideal . Let be a strictly smaller prime ideal and let , which is a -primary ideal called the n-th symbolic power of . It forms a descending chain of ideals . Thus, there is the descending chain of ideals in the ring . Now, the radical is the intersection of all minimal prime ideals containing ; is among them. But is a unique maximal ideal and thus . Since contains some power of its radical, it follows that is an Artinian ring and thus the chain stabilizes and so there is some n such that . It implies:

,

from the fact is -primary (if is in , then with and . Since is minimal over , and so implies is in .) Now, quotienting out both sides by yields . Then, by Nakayama's lemma (which says a finitely generated module M is zero if for some ideal I contained in the radical), we get ; i.e., and thus . Using Nakayama's lemma again, and is an Artinian ring; thus, the height of is zero.

Proof of the height theorem

Krull’s height theorem can be proved as a consequence of the principal ideal theorem by induction on the number of elements. Let be elements in , a minimal prime over and a prime ideal such that there is no prime strictly between them. Replacing by the localization we can assume is a local ring; note we then have . By minimality of , it follows that cannot contain all the ; relabeling the subscripts, say, . Since every prime ideal containing is between and , and thus we can write for each ,

with and . Now we consider the ring and the corresponding chain in it. If is a minimal prime over , then contains and thus ; that is to say, is a minimal prime over and so, by Krull’s principal ideal theorem, is a minimal prime (over zero); is a minimal prime over . By inductive hypothesis, and thus .

References

  1. ^ Eisenbud 1995, Corollary 10.5.
  • Eisenbud, David (1995). Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics. Vol. 150. Springer-Verlag. doi:10.1007/978-1-4612-5350-1. ISBN 0-387-94268-8.
  • Matsumura, Hideyuki (1970), Commutative Algebra, New York: Benjamin, see in particular section (12.I), p. 77
  • http://www.math.lsa.umich.edu/~hochster/615W10/supDim.pdf

Read other articles:

Futura série de televisão Este artigo ou seção é sobre uma futura série de televisão. As informações apresentadas podem mudar com frequência à medida que os eventos se aproximam. Não adicione especulações, nem textos sem referências ou fontes confiáveis; melhore-o de acordo com as recomendações dos projetos correspondentes. American Born Chinese Informação geral Formato série Gênero Comédia de ação Criador(es) Charles Yu Kelvin Yu Baseado em O Chinês Americano, de Ge...

 

Маскування — термін, який має кілька значень. Ця сторінка значень містить посилання на статті про кожне з них.Якщо ви потрапили сюди за внутрішнім посиланням, будь ласка, поверніться та виправте його так, щоб воно вказувало безпосередньо на потрібну статтю.@ пошук посила...

 

American politician Florian LampertMember of the U.S. House of Representativesfrom Wisconsin's 6th districtIn officeNovember 5, 1918 – July 18, 1930Preceded byJames H. DavidsonSucceeded byMichael Reilly Personal detailsBorn(1863-07-08)July 8, 1863West Bend, WisconsinDiedJuly 18, 1930(1930-07-18) (aged 67)Fond du Lac, WisconsinPolitical partyRepublican Florian Lampert (July 8, 1863 – July 18, 1930), was a Republican member of the United States House of Representat...

Skeppsbron (Swedia: Jembatan Kapal) merupakan sebuah jalan dan dermaga di Gamla stan, kota tua Stockholm, ibu kota Swedia, yang membentang dari jembatan Strömbron di depan Royal Palace selatan ke Slussen. Dermaga Skeppsbrokajen berjalan di sepanjang jalan. Beberapa gang menghubungkan Skeppsbron ke jalan raya Osterlanggatan: Slottskajen, Lejonbacken, Slottsbacken, Telegrafgränd, Skeppar Karls Grand, Bredgränd, Kråkgränd, Nygränd, Brunnsgränd, Skottgränd, Stora Hoparegränd, Drakens Gra...

 

تحتاج هذه المقالة إلى تهذيب لتتناسب مع دليل الأسلوب في ويكيبيديا. فضلاً، ساهم في تهذيب هذه المقالة من خلال معالجة مشكلات الأسلوب فيها. عقل وجمجمة البشر أسطورة العشرة بالمئة من الدماغ هي فرضية لم تبرهن علميًا بعد؛ تقول بأن الإنسان لا يستخدم سوى عشرة بالمئة فقط من قدرات دماغ...

 

Municipal Building in Ballynahinch, Northern Ireland Ballynahinch Market HouseBallynahinch Market HouseLocationMarket Square, BallynahinchCoordinates54°24′08″N 5°53′50″W / 54.4022°N 5.8973°W / 54.4022; -5.8973Built1795Architectural style(s)Neoclassical style Listed Building – Grade B1Official nameOld Court House, AKA Former market house, The Square, Ballynahinch, County DownDesignated11 February 1980Reference no.HB 18/07/005 Shown in Northern Ireland...

H-3 Air BaseAl Walid AirbaseCamp Korean Village/Camp KV (USMC)Al-Anbar Province, Iraq H-3 Main Air Base, 1995H-3 Air BaseLocation of H-3 Air BaseCoordinates32°55′46″N 039°44′38″E / 32.92944°N 39.74389°E / 32.92944; 39.74389 (H-3 AB)Site informationOpen tothe publicNoConditionAbandonedSite historyBuilt1935 (1935)In use1935 - 2003Battles/warsWorld War IIIran–Iraq WarOperation Desert StormOperation Iraqi FreedomAirfield informatio...

 

Public high school in Lancaster County, Pennsylvania, United StatesJ. P. McCaskey High SchoolAddress445 N Reservoir StLancaster County, PennsylvaniaUnited StatesCoordinates40°02′49″N 76°17′27″W / 40.04704°N 76.29081°W / 40.04704; -76.29081InformationTypePublic high schoolEstablished1938School districtSchool District of LancasterSuperintendentDamaris Rau[2]PrincipalJustin Reese[3]Teaching staff196.25 (FTE)[1]Enrollment2,631 (2019–20...

 

Zona rosa Serie de televisiónProtagonistas Carolina Sabino Norma Nivia Nataly Umaña Carolina Gaitán Jorge Cárdenas Roberto Cano Tiberio Cruz Juan Miguel Marín Santiago Bejarano.Ambientación Contemporáneo (2007)País de origen ColombiaN.º de episodios 120ProducciónDuración 60 minutos aproxEmpresa(s) productora(s) Fox TelecolombiaLanzamientoMedio de difusión RCN TelevisiónHorario lunes a viernes - 9:00 p. m.Primera emisión 14 de marzo de 2007Última emisión 13 de julio de 200...

Fictional character Cobra TroopersG.I. Joe characterCobra Viper figure released in 2008.First appearance1982Voiced byVarious actorsIn-universe informationAffiliationCobraSpecialtyMainly as infantry, but depends on the specific Viper classFile nameVariousBirth placeVariousSNVariousRankVariousPrimary MOSVariousSecondary MOSVariousSeriesAll series, including cartoons and comics The Cobra Troopers serve as the basic foot soldiers of the Cobra Organization, as part of the G.I. Joe: A Real American...

 

Este artigo ou secção necessita de referências de fontes secundárias fiáveis e independentes. Fontes primárias, ou com conflitos de interesse, não são adequadas para verbetes enciclopédicos. Ajude a incluir referências.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) Nossa Época à Luz da Profecia (em inglês: Our Day in the Light of Prophecy) é o título de um livro adventista escrito por William Ambrose Spicer (...

 

American professional basketball team of the NBA G League Maine CelticsConferenceEasternLeagueNBA G LeagueFounded2009HistoryMaine Red Claws2009–2021Maine Celtics2021–presentArenaPortland Exposition BuildingLocationPortland, MaineTeam colorsGreen, white, black, brown[1][2]       Main sponsorVistaprintPresidentDajuan EubanksGeneral managerJarell ChristianHead coachBlaine MuellerOwnershipBoston CelticsAffiliation(s)Boston CelticsChampionships0Conference ti...

Bound and self-contained mathematical expression This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (November 2015) A supercombinator is a mathematical expression which is fully...

 

Parte da série sobre osDireitos LGBT Direitos Leis ao redor do mundo Casamento homossexual União civil Adoção LGBT Homoparentalidade Movimentos civis LGBT Princípios de Yogyakarta Tópicos relacionados Homofobia Transfobia Heterossexismo Violência contra pessoas LGBT Portal LGBTvde Oposição aos direitos LGBT é a oposição a direitos legais, propostos ou efetivos, para pessoas lésbicas, gays, bissexuais ou transgênero. Organizações influentes na oposição de direitos LGBT freque...

 

Roberto Fraile Roberto Lozano y Roberto Fraile (imagen de 2012)Información personalNacimiento 1974 Baracaldo (España) Fallecimiento 26 de abril de 2021 Parque nacional de Arli (Burkina Faso) Causa de muerte Terrorismo y homicidio Nacionalidad EspañolaInformación profesionalOcupación Periodista y camarógrafo Distinciones Gran Cruz de la Orden del Mérito Civil (2021) [editar datos en Wikidata] Roberto Fraile Fernández (Baracaldo, Vizcaya, 1974-Parque nacional de Arli, Reg...

สายไหม (بالتايلندية: เขตสายไหม)‏   خريطة الموقع الشعار (بالتايلندية: อาคารคุ้มเกล้าตระการตา มาตรฐาน การศึกษากว้างไกล แพร่ไสวการเกษตร วิเศษการกีฬา ศรัทธาในคุณธรรม)‏  تاريخ التأسيس 21 نوفمبر 1997  تقسيم إدا...

 

Pour les articles homonymes, voir Château de Beauregard. Château de Beauregard Façade principale du château de Beauregard. Période ou style Renaissance Début construction Fin du XVe siècle Protection  Classé MH (1840) Inscrit MH (1993) Coordonnées 47° 32′ 13″ nord, 1° 23′ 03″ est[1] Pays France Anciennes provinces de France Orléanais Région Centre-Val de Loire Département Loir-et-Cher Commune Cellettes Géolocalisation su...

 

American punk rock band Me First and the Gimme GimmesBackground informationOriginSan Francisco, California, United StatesGenresPunk rock, pop punk, skate punk[1][2]Years active1995–presentLabels Fat Wreck Chords Pizza of Death MembersSpike Slawson Joey CapeFat MikeDave RaunPast membersChris Shiflett Me First and the Gimme Gimmes (often shortened to MFGG or the Gimmes) are a punk rock supergroup and cover band that formed in San Francisco in 1995. The band's lineup consists o...

American actor This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Eric Millegan – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remove this template message) Eric ...

 

Logo dei Laureus World Sports Awards. I Laureus World Sports Awards sono dei premi annuali assegnati ad atleti di varie discipline sportive che sono stati vincenti durante l'anno precedente. La manifestazione fu istituita nel 1999 da Daimler e Richemont ed è sponsorizzata da Mercedes-Benz, International Watch Company e Vodafone. La prima edizione si è tenuta a Montecarlo il 25 maggio 2000.[1] L'elezione dei vincitori avviene in due fasi: nella prima, una giuria di selezione (formata...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!