There exist many such expansions of a stochastic process: if the process is indexed over [a, b], any orthonormal basis of L2([a, b]) yields an expansion thereof in that form. The importance of the Karhunen–Loève theorem is that it yields the best such basis in the sense that it minimizes the total mean squared error.
In contrast to a Fourier series where the coefficients are fixed numbers and the expansion basis consists of sinusoidal functions (that is, sine and cosine functions), the coefficients in the Karhunen–Loève theorem are random variables and the expansion basis depends on the process. In fact, the orthogonal basis functions used in this representation are determined by the covariance function of the process. One can think that the Karhunen–Loève transform adapts to the process in order to produce the best possible basis for its expansion.
In the case of a centered stochastic process {Xt}t ∈ [a, b] (centered means E[Xt] = 0 for all t ∈ [a, b]) satisfying a technical continuity condition, X admits a decomposition
where Zk are pairwise uncorrelated random variables and the functions ek are continuous real-valued functions on [a, b] that are pairwise orthogonal in L2([a, b]). It is therefore sometimes said that the expansion is bi-orthogonal since the random coefficients Zk are orthogonal in the probability space while the deterministic functions ek are orthogonal in the time domain. The general case of a process Xt that is not centered can be brought back to the case of a centered process by considering Xt − E[Xt] which is a centered process.
Moreover, if the process is Gaussian, then the random variables Zk are Gaussian and stochastically independent. This result generalizes the Karhunen–Loève transform. An important example of a centered real stochastic process on [0, 1] is the Wiener process; the Karhunen–Loève theorem can be used to provide a canonical orthogonal representation for it. In this case the expansion consists of sinusoidal functions.
Throughout this article, we will consider a random process Xt defined over a probability space(Ω, F, P) and indexed over a closed interval [a, b], which is square-integrable, has zero-mean, and with covariance function KX(s, t). In other words, we have:
The square-integrable condition is logically equivalent to being finite for all .[4]
Since TKX is a linear operator, it makes sense to talk about its eigenvalues λk and eigenfunctions ek, which are found solving the homogeneous Fredholm integral equation of the second kind
Statement of the theorem
Theorem. Let Xt be a zero-mean square-integrable stochastic process defined over a probability space (Ω, F, P) and indexed over a closed and bounded interval [a, b], with continuous covariance function KX(s, t).
Then KX(s,t) is a Mercer kernel and letting ek be an orthonormal basis on L2([a, b]) formed by the eigenfunctions of TKX with respective eigenvalues λk, Xt admits the following representation
Furthermore, the random variables Zk have zero-mean, are uncorrelated and have variance λk
Note that by generalizations of Mercer's theorem we can replace the interval [a, b] with other compact spaces C and the Lebesgue measure on [a, b] with a Borel measure whose support is C.
Proof
The covariance function KX satisfies the definition of a Mercer kernel. By Mercer's theorem, there consequently exists a set λk, ek(t) of eigenvalues and eigenfunctions of TKX forming an orthonormal basis of L2([a,b]), and KX can be expressed as
The process Xt can be expanded in terms of the eigenfunctions ek as:
where the coefficients (random variables) Zk are given by the projection of Xt on the respective eigenfunctions
We may then derive
where we have used the fact that the ek are eigenfunctions of TKX and are orthonormal.
Let us now show that the convergence is in L2. Let
Then:
which goes to 0 by Mercer's theorem.
Properties of the Karhunen–Loève transform
Special case: Gaussian distribution
Since the limit in the mean of jointly Gaussian random variables is jointly Gaussian, and jointly Gaussian random (centered) variables are independent if and only if they are orthogonal, we can also conclude:
Theorem. The variables Zi have a joint Gaussian distribution and are stochastically independent if the original process {Xt}t is Gaussian.
In the Gaussian case, since the variables Zi are independent, we can say more:
almost surely.
The Karhunen–Loève transform decorrelates the process
This is a consequence of the independence of the Zk.
The Karhunen–Loève expansion minimizes the total mean square error
In the introduction, we mentioned that the truncated Karhunen–Loeve expansion was the best approximation of the original process in the sense that it reduces the total mean-square error resulting of its truncation. Because of this property, it is often said that the KL transform optimally compacts the energy.
More specifically, given any orthonormal basis {fk} of L2([a, b]), we may decompose the process Xt as:
where
and we may approximate Xt by the finite sum
for some integer N.
Claim. Of all such approximations, the KL approximation is the one that minimizes the total mean square error (provided we have arranged the eigenvalues in decreasing order).
Proof
Consider the error resulting from the truncation at the N-th term in the following orthonormal expansion:
The mean-square error εN2(t) can be written as:
We then integrate this last equality over [a, b]. The orthonormality of the fk yields:
The problem of minimizing the total mean-square error thus comes down to minimizing the right hand side of this equality subject to the constraint that the fk be normalized. We hence introduce βk, the Lagrangian multipliers associated with these constraints, and aim at minimizing the following function:
Differentiating with respect to fi(t) (this is a functional derivative) and setting the derivative to 0 yields:
which is satisfied in particular when
In other words, when the fk are chosen to be the eigenfunctions of TKX, hence resulting in the KL expansion.
Explained variance
An important observation is that since the random coefficients Zk of the KL expansion are uncorrelated, the Bienaymé formula asserts that the variance of Xt is simply the sum of the variances of the individual components of the sum:
Integrating over [a, b] and using the orthonormality of the ek, we obtain that the total variance of the process is:
In particular, the total variance of the N-truncated approximation is
As a result, the N-truncated expansion explains
of the variance; and if we are content with an approximation that explains, say, 95% of the variance, then we just have to determine an such that
The Karhunen–Loève expansion has the minimum representation entropy property
Given a representation of , for some orthonormal basis and random , we let , so that . We may then define the representation entropy to be . Then we have , for all choices of . That is, the KL-expansion has minimal representation entropy.
Proof:
Denote the coefficients obtained for the basis as , and for as .
Choose . Note that since minimizes the mean squared error, we have that
Expanding the right hand size, we get:
Using the orthonormality of , and expanding in the basis, we get that the right hand size is equal to:
We may perform identical analysis for the , and so rewrite the above inequality as:
Subtracting the common first term, and dividing by , we obtain that:
This implies that:
Linear Karhunen–Loève approximations
Consider a whole class of signals we want to approximate over the first M vectors of a basis. These signals are modeled as realizations of a random vector Y[n] of size N. To optimize the approximation we design a basis that minimizes the average approximation error. This section proves that optimal bases are Karhunen–Loeve bases that diagonalize the covariance matrix of Y. The random vector Y can be decomposed in an orthogonal basis
as follows:
where each
is a random variable. The approximation from the first M ≤ N vectors of the basis is
The energy conservation in an orthogonal basis implies
This error is related to the covariance of Y defined by
For any vector x[n] we denote by K the covariance operator represented by this matrix,
The error ε[M] is therefore a sum of the last N − M coefficients of the covariance operator
The covariance operator K is Hermitian and Positive and is thus diagonalized in an orthogonal basis called a Karhunen–Loève basis. The following theorem states that a Karhunen–Loève basis is optimal for linear approximations.
Theorem (Optimality of Karhunen–Loève basis). Let K be a covariance operator. For all M ≥ 1, the approximation error
is minimum if and only if
is a Karhunen–Loeve basis ordered by decreasing eigenvalues.
Non-Linear approximation in bases
Linear approximations project the signal on M vectors a priori. The approximation can be made more precise by choosing the M orthogonal vectors depending on the signal properties. This section analyzes the general performance of these non-linear approximations. A signal is approximated with M vectors selected adaptively in an orthonormal basis for [definition needed]
Let be the projection of f over M vectors whose indices are in IM:
The approximation error is the sum of the remaining coefficients
To minimize this error, the indices in IM must correspond to the M vectors having the largest inner product amplitude
These are the vectors that best correlate f. They can thus be interpreted as the main features of f. The resulting error is necessarily smaller than the error of a linear approximation which selects the M approximation vectors independently of f. Let us sort
in decreasing order
The best non-linear approximation is
It can also be written as inner product thresholding:
with
The non-linear error is
this error goes quickly to zero as M increases, if the sorted values of have a fast decay as k increases. This decay is quantified by computing the norm of the signal inner products in B:
The following theorem relates the decay of ε[M] to
Theorem (decay of error). If with p < 2 then
and
Conversely, if then
for any q > p.
Non-optimality of Karhunen–Loève bases
To further illustrate the differences between linear and non-linear approximations, we study the decomposition of a simple non-Gaussian random vector in a Karhunen–Loève basis. Processes whose realizations have a random translation are stationary. The Karhunen–Loève basis is then a Fourier basis and we study its performance. To simplify the analysis, consider a random vector Y[n] of size N that is random shift modulo N of a deterministic signal f[n] of zero mean
The random shift P is uniformly distributed on [0, N − 1]:
Clearly
and
Hence
Since RY is N periodic, Y is a circular stationary random vector. The covariance operator is a circular convolution with RY and is therefore diagonalized in the discrete Fourier Karhunen–Loève basis
The power spectrum is Fourier transform of RY:
Example: Consider an extreme case where . A theorem stated above guarantees that the Fourier Karhunen–Loève basis produces a smaller expected approximation error than a canonical basis of Diracs . Indeed, we do not know a priori the abscissa of the non-zero coefficients of Y, so there is no particular Dirac that is better adapted to perform the approximation. But the Fourier vectors cover the whole support of Y and thus absorb a part of the signal energy.
Selecting higher frequency Fourier coefficients yields a better mean-square approximation than choosing a priori a few Dirac vectors to perform the approximation. The situation is totally different for non-linear approximations. If then the discrete Fourier basis is extremely inefficient because f and hence Y have an energy that is almost uniformly spread among all Fourier vectors. In contrast, since f has only two non-zero coefficients in the Dirac basis, a non-linear approximation of Y with M ≥ 2 gives zero error.[5]
We have established the Karhunen–Loève theorem and derived a few properties thereof. We also noted that one hurdle in its application was the numerical cost of determining the eigenvalues and eigenfunctions of its covariance operator through the Fredholm integral equation of the second kind
However, when applied to a discrete and finite process , the problem takes a much simpler form and standard algebra can be used to carry out the calculations.
Note that a continuous process can also be sampled at N points in time in order to reduce the problem to a finite version.
We henceforth consider a random N-dimensional vector . As mentioned above, X could contain N samples of a signal but it can hold many more representations depending on the field of application. For instance it could be the answers to a survey or economic data in an econometrics analysis.
As in the continuous version, we assume that X is centered, otherwise we can let (where is the mean vector of X) which is centered.
Let us adapt the procedure to the discrete case.
Covariance matrix
Recall that the main implication and difficulty of the KL transformation is computing the eigenvectors of the linear operator associated to the covariance function, which are given by the solutions to the integral equation written above.
Define Σ, the covariance matrix of X, as an N × N matrix whose elements are given by:
Rewriting the above integral equation to suit the discrete case, we observe that it turns into:
where is an N-dimensional vector.
The integral equation thus reduces to a simple matrix eigenvalue problem, which explains why the PCA has such a broad domain of applications.
Since Σ is a positive definite symmetric matrix, it possesses a set of orthonormal eigenvectors forming a basis of , and we write this set of eigenvalues and corresponding eigenvectors, listed in decreasing values of λi. Let also Φ be the orthonormal matrix consisting of these eigenvectors:
Principal component transform
It remains to perform the actual KL transformation, called the principal component transform in this case. Recall that the transform was found by expanding the process with respect to the basis spanned by the eigenvectors of the covariance function. In this case, we hence have:
In a more compact form, the principal component transform of X is defined by:
The i-th component of Y is , the projection of X on and the inverse transform X = ΦY yields the expansion of X on the space spanned by the :
As in the continuous case, we may reduce the dimensionality of the problem by truncating the sum at some such that
where α is the explained variance threshold we wish to set.
We can also reduce the dimensionality through the use of multilevel dominant eigenvector estimation (MDEE).[6]
Examples
The Wiener process
There are numerous equivalent characterizations of the Wiener process which is a mathematical formalization of Brownian motion. Here we regard it as the centered standard Gaussian process Wt with covariance function
We restrict the time domain to [a, b]=[0,1] without loss of generality.
The eigenvectors of the covariance kernel are easily determined. These are
and the corresponding eigenvalues are
Proof
In order to find the eigenvalues and eigenvectors, we need to solve the integral equation:
differentiating once with respect to t yields:
a second differentiation produces the following differential equation:
The general solution of which has the form:
where A and B are two constants to be determined with the boundary conditions. Setting t = 0 in the initial integral equation gives e(0) = 0 which implies that B = 0 and similarly, setting t = 1 in the first differentiation yields e' (1) = 0, whence:
which in turn implies that eigenvalues of TKX are:
The corresponding eigenfunctions are thus of the form:
A is then chosen so as to normalize ek:
This gives the following representation of the Wiener process:
Theorem. There is a sequence {Zi}i of independent Gaussian random variables with mean zero and variance 1 such that
Note that this representation is only valid for On larger intervals, the increments are not independent. As stated in the theorem, convergence is in the L2 norm and uniform in t.
This section needs expansion. You can help by adding to it. (July 2010)
Adaptive optics systems sometimes use K–L functions to reconstruct wave-front phase information (Dai 1996, JOSA A).
Karhunen–Loève expansion is closely related to the Singular Value Decomposition. The latter has myriad applications in image processing, radar, seismology, and the like. If one has independent vector observations from a vector valued stochastic process then the left singular vectors are maximum likelihood estimates of the ensemble KL expansion.
Applications in signal estimation and detection
Detection of a known continuous signal S(t)
In communication, we usually have to decide whether a signal from a noisy channel contains valuable information. The following hypothesis testing is used for detecting continuous signal s(t) from channel output X(t), N(t) is the channel noise, which is usually assumed zero mean Gaussian process with correlation function
Signal detection in white noise
When the channel noise is white, its correlation function is
and it has constant power spectrum density. In physically practical channel, the noise power is finite, so:
Then the noise correlation function is sinc function with zeros at Since are uncorrelated and gaussian, they are independent. Thus we can take samples from X(t) with time spacing
Let . We have a total of i.i.d observations to develop the likelihood-ratio test. Define signal , the problem becomes,
As G is Gaussian, we can characterize it by finding its mean and variances. Then we get
where
is the signal energy.
The false alarm error
And the probability of detection:
where Φ is the cdf of standard normal, or Gaussian, variable.
Signal detection in colored noise
When N(t) is colored (correlated in time) Gaussian noise with zero mean and covariance function we cannot sample independent discrete observations by evenly spacing the time. Instead, we can use K–L expansion to decorrelate the noise process and get independent Gaussian observation 'samples'. The K–L expansion of N(t):
where and the orthonormal bases are generated by kernel , i.e., solution to
Do the expansion:
where , then
under H and under K. Let , we have
are independent Gaussian r.v's with variance
under H: are independent Gaussian r.v's.
under K: are independent Gaussian r.v's.
Hence, the log-LR is given by
and the optimum detector is
Define
then
How to find k(t)
Since
k(t) is the solution to
If N(t)is wide-sense stationary,
which is known as the Wiener–Hopf equation. The equation can be solved by taking fourier transform, but not practically realizable since infinite spectrum needs spatial factorization. A special case which is easy to calculate k(t) is white Gaussian noise.
The corresponding impulse response is h(t) = k(T − t) = CS(T − t). Let C = 1, this is just the result we arrived at in previous section for detecting of signal in white noise.
Test threshold for Neyman–Pearson detector
Since X(t) is a Gaussian process,
is a Gaussian random variable that can be characterized by its mean and variance.
Hence, we obtain the distributions of H and K:
The false alarm error is
So the test threshold for the Neyman–Pearson optimum detector is
Its power of detection is
When the noise is white Gaussian process, the signal power is
Prewhitening
For some type of colored noise, a typical practise is to add a prewhitening filter before the matched filter to transform the colored noise into white noise. For example, N(t) is a wide-sense stationary colored noise with correlation function
When the signal we want to detect from the noisy channel is also random, for example, a white Gaussian process X(t), we can still implement K–L expansion to get independent sequence of observation. In this case, the detection problem is described as follows:
X(t) is a random process with correlation function
The K–L expansion of X(t) is
where
and are solutions to
So 's are independent sequence of r.v's with zero mean and variance . Expanding Y(t) and N(t) by , we get
where
As N(t) is Gaussian white noise, 's are i.i.d sequence of r.v with zero mean and variance , then the problem is simplified as follows,
The Neyman–Pearson optimal test:
so the log-likelihood ratio is
Since
is just the minimum-mean-square estimate of given 's,
K–L expansion has the following property: If
where
then
So let
Noncausal filter Q(t,s) can be used to get the estimate through
^Ghoman, Satyajit; Wang, Zhicun; Chen, PC; Kapania, Rakesh (2012). "A POD-based Reduced Order Design Scheme for Shape Optimization of Air Vehicles". Proc of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2012-1808, Honolulu, Hawaii.
^Giambartolomei, Giordano (2016). "4 The Karhunen-Loève Theorem". The Karhunen-Loève theorem (Bachelors). University of Bologna.
^A wavelet tour of signal processing-Stéphane Mallat
^X. Tang, “Texture information in run-length matrices,” IEEE Transactions on Image Processing, vol. 7, No. 11, pp. 1602–1609, Nov. 1998
References
Stark, Henry; Woods, John W. (1986). Probability, Random Processes, and Estimation Theory for Engineers. Prentice-Hall, Inc. ISBN978-0-13-711706-2. OL21138080M.
Ghanem, Roger; Spanos, Pol (1991). Stochastic finite elements: a spectral approach. Springer-Verlag. ISBN978-0-387-97456-9. OL1865197M.
Guikhman, I.; Skorokhod, A. (1977). Introduction a la Théorie des Processus Aléatoires. Éditions MIR.
Simon, B. (1979). Functional Integration and Quantum Physics. Academic Press.
Karhunen, Kari (1947). "Über lineare Methoden in der Wahrscheinlichkeitsrechnung". Ann. Acad. Sci. Fennicae. Ser. A I. Math.-Phys. 37: 1–79.
Loève, M. (1978). Probability theory Vol. II. Graduate Texts in Mathematics. Vol. 46 (4 ed.). Springer-Verlag. ISBN978-0-387-90262-3.
Wu B., Zhu J., Najm F.(2005) "A Non-parametric Approach for Dynamic Range Estimation of Nonlinear Systems". In Proceedings of Design Automation Conference(841-844) 2005
Wu B., Zhu J., Najm F.(2006) "Dynamic Range Estimation". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25 Issue:9 (1618–1636) 2006
Rally van Frankrijk 2011 2ème Rallye de France - Alsace Hirvonen greep na Solberg's diskwalificatie naar het podium en kwam langszij aan Loeb na diens DNF Ronde 11 uit 13 Land Frankrijk Start en finish Straatsburg Datum 30 september-2 oktober2011 Ondergrond Asfalt Klassementsproeven 23 Competitieve afstand 348,13 km Complete afstand 1296,08 km Deelnemers 66 Aan de finish 34 Algemeen winnaar Sébastien Ogier Citroën Total WRT Vorige Australië 2011 Volgende Catalonië 2011 Portaal ...
2001 film by Keiichi Hara This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this template message) Crayon Shin-chan: The Storm Called: The Adult Empire S...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
Lokasi Lancy Peta kota Lancy (bahasa Arpetan: Lanci) adalah sebuah kotamadya di Kanton Ginevra, Swiss. Dengan penduduk sebanyak 27.000, Lancy adalah kota terbesar ke-3 di seantero kanton. Lancy terletak di selatan Sungai Rhône dan terbagi atas Grand-Lancy dan Petit-Lancy. Ginevra, yang merupakan salah satu kota tempat diselenggarakannya Kejuaraan Sepak Bola Eropa 2008, terletak dekat denga kotamadya Lancy. Lancy dikelilingi oleh kotamadya Onèx, Plan-les-Ouates, Carroge dan juga Genevra. Lan...
Museum Sejarah dan Sejarah Lokal IvankivІванківський історико-краєзнавчий музейDidirikan21 Februari 1981 (1981-02-21)Dibubarkan25 Februari 2022 (2022-02-25)LokasiJalan Taras Shevchenko, 13 IvankivKoordinatKoordinat: 50°55′46.0″N 29°54′16.6″E / 50.929444°N 29.904611°E / 50.929444; 29.904611JenisSejarah dan seni lokalKoleksi pentingKarya Maria PryamchenkoKoleksiSeni, tekstil dan pengetahuan alamDirekturL. Kirei (s...
Joe's ViolinSutradara Kahane Cooperman Raphaela Neihausen Produser Raphaela Neihausen Ditulis olehSinematograferBob RichmanPenyuntingAmira DughriAndrew SaundersonTanggal rilis 14 April 2016 (2016-04-14) (Tribeca) Durasi24 menitNegara Amerika Serikat Bahasa Joe's Violin adalah film dokumenter pendek yang mengisahkan kehidupan seorang penyintas Holocaust sejak ia memutuskan memensiunkan biolanya yang berusia 70 tahun sampai biola tersebut dibeli oleh pemilik baru, seorang gadis berusia...
NFASC التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 3P3Y, 3P40 المعرفات الأسماء المستعارة NFASC, NF, NRCAML, neurofascin, NEDCPMD معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 609145 MGI: MGI:104753 HomoloGene: 24945 GeneCards: 23114 علم الوجود الجيني الوظيفة الجزيئية ...
Naval battle of World War I This article is about the 1914 naval battle. For the 1982 war, see Falklands War. Battle of the Falkland IslandsPart of the First World WarBattle of the Falkland Islands, William Lionel WyllieDate8 December 1914LocationOff the Falkland Islands, South Atlantic52°29′58″S 56°9′59″W / 52.49944°S 56.16639°W / -52.49944; -56.16639Result British victory[1][2] Destruction of the East Asia SquadronBelligerents United...
Athletics teams of Texas Woman's University This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Texas Woman's Pioneers – news · newspapers · books · scholar · ...
Memorial plaque for forced labour of Hungarians in the Soviet Union Part of a series onPopulation transfer in the Soviet Union Policies Dekulakization Evacuation Forced settlements Gulag Peoples Azerbaijanis from Armenia Balkars Bessarabia and Northern Bukovina Chechens and Ingush Chinese Crimean Tatars Estonians Germans from Romania Greeks NKVD operation Ingrian Finns Kalmyks Karachays Koreans Latvians NKVD operation Lithuanians Meskhetian Turks Poles 1944–1946 1955–1959 Between Poland a...
Tikus gemuk Afrika Pousargues Steatomys opimus Status konservasiRisiko rendahIUCN136513 TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoRodentiaFamiliMuridaeGenusSteatomysSpesiesSteatomys opimus Pousargues, 1894 lbs Tikus gemuk Afrika Pousargues (Steatomys opimus) adalah sebuah spesies hewan pengerat. Spesies tersebut berasal dari Republik Afrika Tengah, Kamerun dan Republik Demokratik Kongo. Referensi ^ Hoffmann, M.; Cox, N. (2008). Steatomys opimus. Diakses tanggal 12 August 2012....
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Masuk High School – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) School in Monroe, Fairfield County, Connecticut, United StatesMasuk High SchoolOld Masuk High School Mascot LogoAddress1014 Monro...
Pulau Panjang BesarNegaraIndonesiaGugus kepulauanKepulauan SeribuProvinsiDKI JakartaKabupatenKepulauan SeribuLuas- km²Populasi- Pulau Panjang Besar adalah sebuah pulau yang terletak di Kepulauan Seribu di Daerah Khusus Ibukota Jakarta, Indonesia. Lihat pula Kabupaten Administratif Kepulauan Seribu Kepulauan Seribu Pranala luar Situs resmi Kabupaten Administratif Kepulauan Seribu Diarsipkan 2017-02-22 di Wayback Machine. lbsPulau di Kepulauan Seribu Pulau Air Besar Pulau Air Kecil Pulau ...
Road tunnel complementing the Great St Bernard Pass Great St Bernard TunnelItalian side of the tunnelOverviewLocationItaly/SwitzerlandCoordinates45°51′52″N 7°10′22″E / 45.8645°N 7.17266°E / 45.8645; 7.17266StatusOpenRoute E27/ T 2/ H21CrossesGreat St Bernard PassStart Saint-Rhémy-en-Bosses, Aosta ValleyEnd Bourg-Saint-Pierre, ValaisOperationWork begun1958Opened19 March 1964OperatorSISEX S.A.TrafficAutomotiveTollSee listTechnicalLength5,798 m (6,341...
МимолетMimolette Страна происхождения Франция Город, регион Лилль и др. Молоко коровье Текстура твёрдая Время созревания от 2 месяцев до 2 лет Медиафайлы на Викискладе Мимоле́т (фр. Mimolette) — вид сыра, обычно производимого в окрестностях Лилля во Франции (где он также и...
Botol Beberapa jenis botol Botol (Bahasa Inggris: bottle) adalah tempat penyimpanan dengan bagian leher yang lebih sempit daripada badan dan mulut-nya. Botol umumnya terbuat dari gelas, plastik, atau aluminium, dan digunakan untuk menyimpan cairan seperti air, susu, kopi, minuman ringan, bir, anggur, obat, sabun cair, tinta, dll. Botol dari plastik biasanya dibuat secara ekstrusi. Alat yang digunakan untuk menutup mulut botol disebut tutup botol (eksternal) atau sumbat (internal). Selain itu ...
Пряди́льные культу́ры — технические культурные растения, из которых изготавливают волокно для текстильной промышленности. В мировом производстве наиболее широко используются хлопчатник, лён-долгунец, джут и конопля. Поле цветущего льна-долгунца Коробочки хлопка, г...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. SMP Kristen TheodoreInformasiJenisSekolah SwastaAlamatLokasi, Batam, Kepri, IndonesiaMoto SMP Kristen Theodore, merupakan salah satu Sekolah Menengah Pertama swasta yang ada di Batam, Provinsi Kepulauan Riau. Sama dengan SMP pada umumnya di Indo...