K-vertex-connected graph

A graph with connectivity 4.

In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed.

The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected.

Definitions

A graph (other than a complete graph) has connectivity k if k is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them.[1] In complete graphs, there is no subset whose removal would disconnect the graph. Some sources modify the definition of connectivity to handle this case, by defining it as the size of the smallest subset of vertices whose deletion results in either a disconnected graph or a single vertex. For this variation, the connectivity of a complete graph is .[2]

An equivalent definition is that a graph with at least two vertices is k-connected if, for every pair of its vertices, it is possible to find k vertex-independent paths connecting these vertices; see Menger's theorem (Diestel 2005, p. 55). This definition produces the same answer, n − 1, for the connectivity of the complete graph Kn.[1]

A 1-connected graph is called connected; a 2-connected graph is called biconnected. A 3-connected graph is called triconnected.

Applications

Components

Every graph decomposes into a disjoint union of 1-connected components. 1-connected graphs decompose into a tree of biconnected components. 2-connected graphs decompose into a tree of triconnected components.

Polyhedral combinatorics

The 1-skeleton of any k-dimensional convex polytope forms a k-vertex-connected graph (Balinski's theorem).[3] As a partial converse, Steinitz's theorem states that any 3-vertex-connected planar graph forms the skeleton of a convex polyhedron.

Computational complexity

The vertex-connectivity of an input graph G can be computed in polynomial time in the following way[4] consider all possible pairs of nonadjacent nodes to disconnect, using Menger's theorem to justify that the minimal-size separator for is the number of pairwise vertex-independent paths between them, encode the input by doubling each vertex as an edge to reduce to a computation of the number of pairwise edge-independent paths, and compute the maximum number of such paths by computing the maximum flow in the graph between and with capacity 1 to each edge, noting that a flow of in this graph corresponds, by the integral flow theorem, to pairwise edge-independent paths from to .

Properties

Let k≥2.

  • Every -connected graph of order at least contains a cycle of length at least
  • In a -connected graph, any vertices in lie on a common cycle.[5]

The cycle space of a -connected graph is generated by its non-separating induced cycles. [6]

k-linked graph

A graph with at least vertices is called -linked if there are disjoint paths for any sequences and of distinct vertices. Every -linked graph is -connected graph, but not necessarily -connected. [7]

If a graph is -connected and has average degree of at least , then it is -linked. [8]

See also

Notes

  1. ^ a b Schrijver (12 February 2003), Combinatorial Optimization, Springer, ISBN 9783540443896
  2. ^ Beineke, Lowell W.; Bagga, Jay S. (2021), Line Graphs and Line Digraphs, Developments in Mathematics, vol. 68, Springer Nature, p. 87, ISBN 9783030813864
  3. ^ Balinski, M. L. (1961), "On the graph structure of convex polyhedra in n-space", Pacific Journal of Mathematics, 11 (2): 431–434, doi:10.2140/pjm.1961.11.431.
  4. ^ The algorithm design manual, p 506, and Computational discrete mathematics: combinatorics and graph theory with Mathematica, p. 290-291
  5. ^ Diestel (2016), p.84
  6. ^ Diestel (2012), p.65.
  7. ^ Diestel (2016), p.85
  8. ^ Diestel (2016), p.75

References

Read other articles:

1894 zarzuela You can help expand this article with text translated from the corresponding article in Spanish. (May 2011) Click [show] for important translation instructions. View a machine-translated version of the Spanish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the En...

 

Fulgence Bienvenüe Información personalNombre de nacimiento Fulgence Marie Auguste BienvenüeNacimiento 27 de enero de 1852 Uzel (Francia) Fallecimiento 3 de agosto de 1936 (84 años)París (Francia) Sepultura Cementerio del Père-Lachaise y Grave of Bienvenüe Nacionalidad FrancesaEducaciónEducado en Escuela Politécnica (1870-1872)Escuela Nacional de Puentes y Caminos (1872-1875) Información profesionalOcupación Ingeniero de puentes y caminos, ingeniero civil, ingeniero y arq...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Secret of the Flowers of Phenomenon – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this template message) 2012 studio album by Susumu HirasawaThe Secret of the Flowers of PhenomenonStudio album by Susumu Hir...

Pour les articles homonymes, voir Saint-Hilaire. Saint-Hilaire Blason Administration Pays France Région Occitanie Département Aude Arrondissement Limoux Intercommunalité Communauté de communes du Limouxin Maire Mandat Jean-Louis Carbonnel 2020-2026 Code postal 11250 Code commune 11344 Démographie Gentilé Saint-Hilairois Populationmunicipale 713 hab. (2020 ) Densité 31 hab./km2 Géographie Coordonnées 43° 05′ 38″ nord, 2° 18′ 38″ est Al...

 

Aeropuerto Internacional de Tiflis თბილისის საერთაშორისო აეროპორტი IATA: TBS OACI: UGTB FAA: LocalizaciónUbicación Tiflis, GeorgiaElevación 495Sirve a TiflisDetalles del aeropuertoTipo PúblicoPistas DirecciónLargoSuperficie13R/31L3.000Hormigón13L/31R2.500AsfaltoMapa TBS / UGTB Situación del aeropuerto en GeorgiaSitio web http://www.tbilisiairport.com[editar datos en Wikidata] El Aeropuerto Internacional de Tiflis (en g...

 

Dalam artikel ini, nama keluarganya adalah Park. Park Sol-miPark in 2018LahirPark Hye-jeong3 Januari 1978 (umur 45)Iksan, Provinsi Jeolla Utara, Korea SelatanPendidikanUniversitas Sangmyung – Film dan Media Studies (1996)Universitas Sungkyunkwan – Graduate School of Performing ArtsPekerjaanPemeranTahun aktif1996–sekarangAgenFantagioSuami/istriHan Jae-suk ​(m. 2013)​Nama KoreaHangul박솔미 Hanja朴帥眉 Alih AksaraBak Sol-miMcCune–ReischauerPak...

Logo de Google depuis le 1er septembre 2015. Le logo de Google est un logotype utilisé par le moteur de recherche américain Google, qui est composé depuis septembre 2015 dans sa propre police d'écriture intitulée Product Sans. La précédente version a été dessinée par Ruth Kedar et utilise la police Catull[1]. Il est régulièrement modifié pour célébrer des événements particuliers, comme les fêtes nationales ou les Jeux olympiques ; ces logos modifiés sont connus sous le...

 

تياغو إيسخايو معلومات شخصية الميلاد 1 أغسطس 1995 (28 سنة)  نازاري (البرتغال)  الطول 1.75 م (5 قدم 9 بوصة) مركز اللعب وسط الجنسية البرتغال  معلومات النادي النادي الحالي أروكا(معارًا من سبورتينغ براغا) الرقم 31 مسيرة الشباب سنوات فريق 2003–2009 Nazarenos 2009–2013 أونياو ليريا 2013–...

 

Albanian singer (born 1984) Eugent BushpepaBushpepa in 2020Background informationAlso known asGent BushpepaBorn (1984-07-02) 2 July 1984 (age 39)Rrëshen, AlbaniaOccupation(s)SingersongwritercomposerInstrumentsVocalsguitarYears active1998–presentLabelsIndependentMusical artist Eugent Bushpepa (Albanian pronunciation: [ɛuˈɡɛnt buʃˈpɛpa]; born 2 July 1984), also known by his alternative name Gent Bushpepa, is an Albanian singer, songwriter and composer.[1] Regarded...

County in RomaniaJudețul RomanCounty (Județ) Coat of armsCountry RomaniaHistoric regionMoldaviaCapital city (Reședință de județ)RomanEstablished1925Ceased to existAdministrative reform of 1950Area • Total1,880 km2 (730 sq mi)Population (1930) • Total151,550 • Density81/km2 (210/sq mi)Time zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Roman County is one of the historic counties of Moldavia, Romania. The county seat wa...

 

Part of a series on theOlympic water polorecords and statistics Topics Overall statistics men women Champions men women Team appearances men women Player appearances men women Medalists men women Top goalscorers men women Goalkeepers men women Flag bearers and oath takers Venues Teams Men's teams Australia Belgium Brazil Canada Croatia Egypt France Germany Great Britain Greece Hungary Italy Japan Kazakhstan Montenegro Netherlands Romania Russia Serbia Serbia and Montenegro Soviet Union Spain ...

 

Island in southern Portugal This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Barreta Island – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) Fishermen's shelter houses Barreta Island (Portuguese: Ilha da Barretta) is an island in Algarve, Portug...

Traditional Oil Wrestling in Turkey is a UNESCCO listed Intangible Cultural Heritage Wrestling (Turkish: güreş) is considered as an ancestral sport in Turkey, represented foremost by the annual Kırkpınar tournament in oil wrestling. Along with various highly esteemed styles of folk wrestling (known colloquially as çayır güreşi, or meadow wrestling, because bouts are held on grass fields), olympic wrestling (known colloquially as minder güreşi, or mat wrestling) is widely practiced, ...

 

2022 film by Saela Davis and Anna Rose Holmer God's CreaturesTheatrical release posterDirected by Saela Davis Anna Rose Holmer Screenplay byShane CrowleyStory by Fodhla Cronin O'Reilly Shane Crowley Produced byFodhla Cronin O'ReillyStarring Emily Watson Paul Mescal Aisling Franciosi Declan Conlon Toni O'Rourke Marion O'Dwyer Brendan McCormack Lalor Roddy CinematographyChayse IrvinEdited by Jeanne Applegate Julia Bloch Music by Danny Bensi Saunder Jurriaans Productioncompanies A24 BBC Film...

 

У этого термина существуют и другие значения, см. TNT (значения). нидерл. TNT Express N.V.англ. TNT Express Тип Публичная компания с ограниченной ответственностью (Naamloze Vennootschap) Основание 2011 (как самостоятельная компания Нидерландов); 1946 (как Thomas Nationwide Transport в Австралии) Предшественн...

1995 soundtrack album by various artistsDemon KnightSoundtrack album by various artistsReleasedJanuary 10, 1995[1]Recorded1994Genre Heavy metal thrash metal alternative rock industrial rock post-punk hip hop Length41:00LabelAtlanticProducerAndrew LearySingles from Demon Knight 1-800 SuicideReleased: January 24, 1995 Professional ratingsReview scoresSourceRatingAllMusic[1] Demon Knight is the official soundtrack to the 1995 horror film, Demon Knight. It was released on ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2015)النموذج الحضري في العالم العربيمعلومات عامةالمؤلف ستيفانو بيانكاتعديل - تعديل مصدري - تعديل ويكي بيانات النموذج الحضري في العالم العربي: ماضيه وحاضره (بالإ...

 

For the mission in India aiming to develop the Kokborok culture in the world, see Kokborok tei Hukumu Mission. Radio station in Lubbock, TexasKTTZ-FMLubbock, TexasFrequency89.1 MHz (HD Radio)BrandingTexas Tech Public MediaProgrammingFormatPublic radio/ClassicalSubchannelsHD2: Classical/jazzHD3: BBC World ServiceAffiliationsNational Public RadioBBC World Service (American Public Media)OwnershipOwnerTexas Tech UniversitySister stationsKTTZ-TV, KTXT-FMHistoryFirst air dateJanuary 1973 ...

2015 single by MAX featuring Hoodie AllenGibberishSingle by MAX featuring Hoodie Allenfrom the EP Ms. Anonymous and the album Hell's Kitchen Angel ReleasedMarch 23, 2015Recorded2014–15Length3:30LabelDCD2CrushSongwriter(s)Jonas JebergHoodie AllenMorgan Taylor ReidSean DouglasMAX singles chronology Puppeteer (2015) Gibberish (2015) Ms. Anonymous (2015) Hoodie Allen singles chronology Let It All Work Out(2015) Gibberish(2015) The Moment(2015) Music videoGibberish on YouTube Gibberish i...

 

For the 1989 Bengali film, see Amar Prem (1989 film). 1972 romantic drama film by Shakti Samanta Amar PremDirected byShakti SamantaScreenplay byArabinda MukherjeeRamesh Pant (dialogue)Based onHinger Kochuri by Bibhutibhushan Bandopadhyay and Nishi Padma (Bengali Film)Produced byShakti SamantaStarringSharmila TagoreRajesh KhannaCinematographyAloke DasguptaEdited byGovind DalwadiMusic byR. D. BurmanProductioncompanyShakti FilmsRelease date 28 January 1972 (1972-01-28) CountryIndi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!