K-topology

In mathematics, particularly in the field of topology, the K-topology,[1] also called Smirnov's deleted sequence topology,[2] is a topology on the set R of real numbers which has some interesting properties. Relative to the standard topology on R, the set is not closed since it doesn't contain its limit point 0. Relative to the K-topology however, the set K is declared to be closed by adding more open sets to the standard topology on R. Thus the K-topology on R is strictly finer than the standard topology on R. It is mostly useful for counterexamples in basic topology. In particular, it provides an example of a Hausdorff space that is not regular.

Formal definition

Let R be the set of real numbers and let The K-topology on R is the topology obtained by taking as a base the collection of all open intervals together with all sets of the form [1] The neighborhoods of a point are the same as in the usual Euclidean topology. The neighborhoods of are of the form , where is a neighborhood of in the usual topology.[3] The open sets in the K-topology are precisely the sets of the form with open in the usual Euclidean topology and [2]

Properties

Throughout this section, T will denote the K-topology and (R, T) will denote the set of all real numbers with the K-topology as a topological space.

1. The K-topology is strictly finer than the standard topology on R. Hence it is Hausdorff, but not compact.

2. The K-topology is not regular, because K is a closed set not containing , but the set and the point have no disjoint neighborhoods. And as a further consequence, the quotient space of the K-topology obtained by collapsing K to a point is not Hausdorff. This illustrates that a quotient of a Hausdorff space need not be Hausdorff.

3. The K-topology is connected. However, it is not path connected; it has precisely two path components: and

4. The K-topology is not locally path connected at and not locally connected at . But it is locally path connected and locally connected everywhere else.

5. The closed interval [0,1] is not compact as a subspace of (R, T) since it is not even limit point compact (K is an infinite closed discrete subspace of (R, T), hence has no limit point in [0,1]). More generally, no subspace A of (R, T) containing K is compact.

See also

Notes

  1. ^ a b Munkres 2000, p. 82.
  2. ^ a b Steen & Seebach 1995, Counterexample 64.
  3. ^ Willard 2004, Example 14.2.

References

  • Munkres, James R. (2000). Topology (2nd ed.). Upper Saddle River, NJ: Prentice Hall, Inc. ISBN 978-0-13-181629-9. OCLC 42683260.
  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978]. Counterexamples in Topology (Dover reprint of 1978 ed.). Berlin, New York: Springer-Verlag. ISBN 978-0-486-68735-3. MR 0507446.
  • Willard, Stephen (2004) [1970]. General Topology. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240.

Read other articles:

  لمعانٍ أخرى، طالع محلة القصب (توضيح). محلة القصب  -  قرية مصرية -  تقسيم إداري البلد  مصر المحافظة محافظة كفر الشيخ المركز كفر الشيخ المسؤولون السكان التعداد السكاني 14184 نسمة (إحصاء 2006) معلومات أخرى التوقيت ت ع م+02:00  تعديل مصدري - تعديل   قرية محلة القصب ه

 

Katedral BeijingGereja Katedral Perawan Maria Dikandung Tanpa Noda di BeijingGereja XuanwumenHanzi: 圣母无染原罪堂Katedral BeijingLokasiBeijingNegara TiongkokDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifGayaBaroquePeletakan batu pertama1605AdministrasiKeuskupan AgungKeuskupan Agung BeijingKlerusUskup AgungYang Mulia Mgr. Joseph Li Shan Interior Katedral Nantang Katedral Nantang dari Jalan Katedral Beijing atau yang bernama resmi Katedral Perawan M...

 

خاقاني الشرواني أفضل‌ الدين إبراهيم بن علي الشرواني معلومات شخصية اسم الولادة أفضل‌ الدين إبراهيم بن علي الشرواني الميلاد 1120شماخى حاليا، دولة شروانشاه في وقت سابق قرن 12 الوفاة 1199تبريز مكان الدفن مقبرة الشعراء الجنسية دولة دولة شروانشاه الحياة العملية المهنة شاعر، كاتب ا

Cet article est une ébauche concernant l’astronomie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Andromède XVIII. Andromède XVIII est une galaxie naine du Groupe local découverte en 2008. C'est une des galaxies naines orbitant la galaxie d'Andromède. Notes et références Voir aussi Sous-groupe d'Andromède v · mLes galaxies du Groupe local et de sa périphérie Principaux membres Voie lactée Gr...

 

Coordenadas: 46° 33' 37 N 0° 04' 27 E Lavausseau   Comuna francesa    Localização LavausseauLocalização de Lavausseau na França Coordenadas 46° 33' 37 N 0° 04' 27 E País  França Região Nova Aquitânia Departamento Vienne Características geográficas Área total 24,71 km² População total (2018) [1] 3 124 hab. Densidade 126,4 hab./km² Código Postal 86470 Código INSEE 86123 Lavausseau foi uma comuna f...

 

De Zwitserse Gereformeerde Kerken (Duits: Evangelisch-reformierte Kirchen der Schweiz - evangelisch-gereformeerde kerken van Zwitserland) zijn kantonale regionale kerken in Zwitserland die ontstonden tijdens de Reformatie. De kerken hebben in totaal zo'n 2,4 miljoen leden verdeeld over 980 kerken met circa 1500 predikanten. Het aantal actief praktiserenden is niet bekend.[1] Ze zijn historisch gebaseerd op de leer van Huldrych Zwingli en Johannes Calvijn; de Duitstalige kerken zijn me...

روبي كيلر (بالإنجليزية: Ruby Keeler)‏    معلومات شخصية الميلاد 25 أغسطس 1909[1]  دارتموث،  وهاليفاكس  الوفاة 28 فبراير 1993 (83 سنة) [1]  رانتشو ميراج، ريفيرسيدي، كاليفورنيا  سبب الوفاة سرطان الكلية  مواطنة الولايات المتحدة كندا  الزوج آل جولسون (1928–1940)  ا...

 

Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. رمضان RamadanSebuah bulan sabit dapat terlihat di atas pohon kurma saat mata...

 

Возниця Ольга ФедорівнаНародилася 14 березня 1925(1925-03-14)Ходорів, Жидачівський район, Львівська область, УкраїнаПомерла 28 квітня 2015(2015-04-28) (90 років)Поховання Янівський цвинтар :  О́льга Фе́дорівна Возни́ця (14 березня 1925, Ходорів — 28 квітня 2015, Львів) — майстриня ху...

هيئة المطارات التنزانية تفاصيل الوكالة الحكومية البلد تنزانيا  تأسست 1999  المركز مطار جوليوس نيريري  الإدارة موقع الويب الموقع الرسمي  تعديل مصدري - تعديل   هيئة المطارات التنزانية (TAA) هي الهيئة مسؤولة عن توفير خدمات المطارات والدعم الأرضي والبنية التحتية وإنشا

 

Innermost layer of tissue lining the chambers of the heart EndocardiumInterior of right side of heartDetailsIdentifiersLatinEndocardiumMeSHD004699TA98A12.1.05.001TA23962FMA7280Anatomical terminology[edit on Wikidata] Illustration depicting the layers of the heart wall including the innermost endocardium The endocardium (pl.: endocardia) is the innermost layer of tissue that lines the chambers of the heart. Its cells are embryologically and biologically similar to the endothelial cells tha...

 

Phase 2 de l'univers cinématographique Marvel Logo de l'univers cinématographique Marvel. Données clés Titre original Marvel Cinematic Universe - Phase Two Support d'origine Marvel Comics Nombre de films 6 Premier opus Iron Man 3 (2013) Dernier opus Ant-Man (2015) Données clés Sociétés de production Marvel Studios Pays d'origine États-Unis Genre Super-héros Pour plus de détails, voir Fiche technique et Distribution Chronologie du MCU La Saga de l'Infini(The Infinity Saga) Phase 1 (...

For the town, see Algoma, Winnebago County, Wisconsin. For other uses, see Algoma (disambiguation). City in Wisconsin, United StatesAlgoma, WisconsinCityMost of Algoma, taken on June 27, 2020Location of Algoma in Kewaunee County, Wisconsin.Coordinates: 44°36′30″N 87°26′32″W / 44.60833°N 87.44222°W / 44.60833; -87.44222Country United StatesState WisconsinCountyKewauneeArea[1] • Total2.50 sq mi (6.48 km2) •&...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: America's Prom Queen – news · newspapers · books · scholar · JSTOR (March 2008) (Learn how and when to remove this template message) American TV series or program America's Prom QueenStarringKatelyn Morgan (winner)starring Lashell AlexanderJudgesBrooke Hog...

 

Railway station in Tokyo, JapanYou can help expand this article with text translated from the corresponding article in Japanese. (May 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic...

2021 single by Dixie D'Amelio PsychoSingle by Dixie D'Amelio featuring Rubi RoseReleasedJuly 23, 2021Recorded2021GenrePopLength2:30LabelHitcoSongwriter(s) Claire Chicha Cooper Holzman Dixie D'Amelio Paris Douglas Peter Joeseph Fenn Randall Hammers Rubi Rose Producer(s)Cooper HolzmanDixie D'Amelio singles chronology Fuckboy (2021) Psycho (2021) The Real Thing (2021) Psycho is a song by American social media personality and singer Dixie D'Amelio featuring rapper Rubi Rose. The song was rele...

 

Self-levitating board This article is about a self-levitating board. For the type of two-wheeled scooter sometimes known by this name, see Self-balancing scooter. HoverboardBack to the Future film series elementFictional Mattel hoverboard used by the character Marty McFly in both Back to the Future Part II and Back to the Future Part III.PublisherAmblin EntertainmentFirst appearanceBack to the Future Part IICreated byRobert Zemeckis Bob GaleIn-universe informationTypePersonal transportFunctio...

 

Zend Technologies Ltd Тип Публичная Основание 1999 Основатели Энди Гутманс и Зеев Сураски Расположение Купертино, штат Калифорния, США Ключевые фигуры Зеев Сураски (Zeev Suraski), Энди Гутманс (Andy Gutmans) Отрасль Программное обеспечение и Программирование Продукция Zend Engine,Zend Platform,Zend Studio...

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2015) (Learn how and when to remove this template message) Television channel Patra TVCountryGreeceHeadquarters28th October 1, Pyrgos, Elis Patras-Athens New National Road n.57, Patras, Achaea, GreeceProgrammingLanguage(s)GreekOwnershipOwnerCosmos Pelop Media S.A.Sister channelsNickelodeon GreeceHistory...

 

2014 film by Gillian Greene Murder of a CatTheatrical release posterDirected byGillian GreeneWritten by Christian Magalhaes Robert Snow Produced by Molly Hassell Sam Raimi Gillian Greene Ivan Orlic Starring Fran Kranz Nikki Reed J. K. Simmons Leonardo Nam Blythe Danner Greg Kinnear CinematographyChristophe LanzenbergEdited byEric L. BeasonMusic byDeborah LurieProductioncompanies BabyItsColdOutside Pictures[1] Seine Pictures[1] Hassell-Free Productions[1] Distributed by...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!