Joey Albert
|
Read other articles:
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: ゼノビア – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2020年6月) この記事は英語版の対応するページを翻訳するこ
Asuka Langley SoryuTokoh Neon Genesis EvangelionPenampilanperdanaEpisode 8PenciptaGainaxHideaki AnnoYoshiyuki SadamotoPengisi suaraBahasa Jepang:Yūko MiyamuraBahasa Inggris:Tiffany GrantBiodataAliasAsuka Shikinami Langley (Rebuild)[1]GelarChildren KeduaKapten (Rebuild)KerabatKyoko Zeppelin Soryu (ibu)Ryoji Kaji (wali)Misato Katsuragi (wali)KewarganegaraanAmerikaAsuka Langley Soryu (惣流・アスカ・ラングレーcode: ja is deprecated , Sōryū Asuka Rangurē) adalah tokoh fikti...
Famili E (keluarga tekstual E) adalah suatu kelompok tekstual naskah Perjanjian Baru.Tergolong sebagai salah satu keluarga tekstual jenis Bizantium teks-tipe, merupakan salah satu keluarga awal primer jenis teks Bizantin. Nama keluarga ini berasal dari simbol Codex Basilensis, naskah utama dari dari keluarga ini, yang diberi simbol E (von Soden: Ki). Deskripsi Hermann von Soden menemukan keluarga ini dan memberi simbol Ki. Menurutnya merupakan salah satu keluarga awal jenis teks Bizanti...
У Вікіпедії є статті про інших людей із прізвищем Родрігес. Андрес РодрігесAndrés Rodríguez ісп. Andrés Rodríguez Pedotti Президент Парагваю 3 лютого 1989 — 15 серпня 1993Попередник Альфредо СтресснерНаступник Хуан Карлос ВасмосіНародився 19 червня 1923(1923-06-19)Borjad, Ґуайра, ПарагвайПомер 21 ...
For other uses of the term, see Ekipa. This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ekipa Serbia – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Ekipa was a short-lived sports daily published in Belgrade, Serbia. Right from the first issue on April 18,...
People who disagreed with certain features in the Marxist–Leninist state ideology Soviet dissidents were people who disagreed with certain features of Soviet ideology or with its entirety and who were willing to speak out against them.[1] The term dissident was used in the Soviet Union (USSR) in the period from the mid-1960s until the Fall of Communism.[2] It was used to refer to small groups of marginalized intellectuals whose challenges, from modest to radical to the Sovie...
The Bridges of Madison County El puente Roseman.Título Los puentes de MadisonFicha técnicaDirección Clint EastwoodProducción Clint EastwoodKathleen KennedyGuion Richard LaGraveneseBasada en Los puentes de Madison (novela) de Robert James WallerMúsica Lennie NiehausFotografía Jack N. GreenMontaje Joel CoxProtagonistas Clint EastwoodMeryl Streep Ver todos los créditos (IMDb)Datos y cifrasPaís Estados UnidosAño 1995Género Drama románticoDuración 134 minutosIdioma(s) InglésCompañía...
Lolo FerrariFerrari, 1995LahirÈve Valois(1963-02-09)9 Februari 1963Clermont-Ferrand, Puy-de-Dôme, PrancisMeninggal5 Maret 2000(2000-03-05) (umur 37)Grasse, Alpes-Maritimes, PrancisSuami/istriÉric Vigne (m. 1988–2000) Lolo Ferrari (nee Ève Valois;[1] 9 Februari 1963 – 5 Maret 2000)[2] adalah seorang penari Prancis, aktris porno, aktris arus utama dan penyanyi yang disebut sebagai wanita dengan implan ...
Julia Grace Wales in 1916 Julia Grace Wales (14 July 1881 – 15 July 1957) was a Canadian academic known for authoring the Wisconsin Plan, a proposal to set up a conference of intellectuals from neutral nations who would work to find a solution for the First World War. Early life Wales upon graduation, c. 1903 Wales was born on 14 July 1881 in Bury, Eastern Townships, Quebec to Benjamin Nathaniel Wales, a physician - graduate of McGill University in 1874 - and his wife Emma Theodosia (née O...
Organization Asian Handball FederationAHFSportHandballOther sportsBeach handballOfficial websitewww.asianhandball.orgHistoryYear of formation26 August 1974; 49 years ago (1974-08-26)at Tehran, Imperial State of Iran DemographicsMembership size44 MembersAffiliationsInternational federationInternational Handball Federation (IHF)IHF member since1974Other affiliation(s)Olympic Council of AsiaGovernancePresident Yoshihide Watanabe (acting)1st Vice-President Yoshihide WatanabeSecr...
Singaporean lawyer In this Indian name, the name Madasamy is a patronymic, and the person should be referred to by the given name, Ravi. M Raviரவி மாடசாமிM Ravi in 2019BornRavi Madasamy (1969-04-09) 9 April 1969 (age 54)SingaporeEducationCardiff University (LLB) National University of Singapore (BA)Notable workLand of Good English (2004) Hung at Dawn (2005) M Ravi: Kampong Boy (2013) Ravi Madasamy (Tamil: ரவி மாடசாமி), better known as M Ravi, is a ...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Erotica UK – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) Erotica was an adult, consumer exhibition held each November at Olympia, London, UK. A mainstream lifestyle show aimed primarily at wome...
Urban park in Quebec City, Canada An artillery piece on display at The Battlefields Park The Battlefields Park (French: Parc des Champs-de-Bataille) includes the Plains of Abraham with the nearby and smaller Des Braves park, both within the district of Montcalm in Quebec City, and forms one of the few Canadian national urban parks. Its significance lies in the Battle of the Plains of Abraham (1759) and the Battle of Sainte-Foy, fought six months later on today's Des Braves park. It was establ...
بنك الجيناتالمحتوياتالوصفتسلسل النوكليوتيدات لأكثر من 300000 كائن حي مع دعم الشرح الببليوغرافي والبيولوجي.نوع البياناتقالب:تسلسل النيوكليوتيداتالكائناتالكلالعناوينمركز الأبحاثNCBIالاستشهاد الأولى21071399تاريخ الإطلاققالب:تاريخ البدء والعمرالوصولصيغة الملف لغة الترميز ال...
Imperial Bank of Persia, Teheran, 1902 The Imperial Bank of Persia (Persian: بانک شاهنشاهی ایران, romanized: Bank-e Šâhanšâhi-ye Irân) was a British[1] bank that operated as the state bank and bank of issue in Iran (formerly known as Persia until 1935) between 1889 and 1929.[2] It was established in 1885 with a concession from the Persian government to Baron Julius De Reuter (born Israel Beer Josaphat) a German–Jewish banker and businessman who ...
Town in Islamabad C.T, PakistanDharyala SagnaTownDharyala SagnaCoordinates: 33°13′N 73°09′E / 33.22°N 73.15°E / 33.22; 73.15Country PakistanProvince Islamabad C.TElevation489 m (1,604 ft)Time zoneUTC+5 (PST) Dharyala Sagna is a town in the Islamabad Capital Territory of Pakistan. It is located at 33° 22' N 73° 15' E with an altitude of 489 metres (1604 feet).[1] References ^ Location of Dharyala Sagna - Falling Rain Genomics vteNeighbou...
Типові червоно-білі конверти, якими користується Податкова та митна адміністрація Скандал щодо виплати допомоги по догляду за дітьми в Нідерландах (нід. kinderopvangtoeslagaffaire або toeslagenaffaire) — це політичний скандал у Нідерландах щодо неправдивих звинувачень у шахрайстві, вис...
Raven Cliffs WildernessIUCN category Ib (wilderness area)View from Cowrock Mountain inside the Raven Cliffs WildernessLocationLumpkin, Union, and White counties, Georgia, United StatesNearest cityCleveland, GACoordinates34°42′50″N 83°50′10″W / 34.713889°N 83.836111°W / 34.713889; -83.836111Area9,115 acres (3,689 ha)Established1986 (1986)Governing bodyU.S. Forest Service The Raven Cliffs Wilderness was designated in 1986 and currently con...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Madrasah Aliyah Negeri (MAN) 6 JakartaInformasiDidirikan25 Oktober 1993JenisNegeriAkreditasiA (No. 024334)Nomor Statistik Sekolah131131750002Nomor Pokok Sekolah Nasional20177962Kepala SekolahDrs. H. Hasan YeubunKetua KomiteDra. Muthmainah (K...
In geometry, tetrahedron packing is the problem of arranging identical regular tetrahedra throughout three-dimensional space so as to fill the maximum possible fraction of space. The currently densest known packing structure for regular tetrahedra is a double lattice of triangular bipyramids and fills 85.63% of space Currently, the best lower bound achieved on the optimal packing fraction of regular tetrahedra is 85.63%.[1] Tetrahedra do not tile space,[2] and an upper bound b...