Isotopes of yttrium
Natural yttrium (39 Y) is composed of a single isotope yttrium-89. The most stable radioisotopes are 88 Y, which has a half-life of 106.6 days, and 91 Y, with a half-life of 58.51 days. All the other isotopes have half-lives of less than a day, except 87 Y, which has a half-life of 79.8 hours, and 90 Y, with 64 hours. The dominant decay mode below the stable 89 Y is electron capture and the dominant mode after it is beta emission . Thirty-five unstable isotopes have been characterized.
90 Y exists in equilibrium with its parent isotope strontium -90, which is a product of nuclear fission .
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ 3] [ n 2] [ n 3]
Half-life [ 4] [ n 4]
Decay mode [ 4] [ n 5]
Daughter isotope [ n 6] [ n 7]
Spin andparity [ 4] [ n 8] [ n 4]
Isotopic abundance
Excitation energy[ n 4]
76 Y
39
37
75.95894(32)#
28(9) ms
β+ ?
76 Sr
1−#
p ?
75 Sr
β+ , p?
75 Rb
77 Y
39
38
76.95015(22)#
63(17) ms
β+
77 Sr
5/2+#
p?
76 Sr
β+ , p?
76 Rb
78 Y
39
39
77.94399(32)#
54(5) ms
β+
78 Sr
(0+)
β+ , p?
77 Rb
78m Y[ n 9]
0(500)# keV
5.8(6) s
β+
78 Sr
(5+)
β+ , p?
77 Rb
79 Y
39
40
78.937946(86)
14.8(6) s
β+
79 Sr
5/2+#
80 Y
39
41
79.9343548(67)
30.1(5) s
β+
80 Sr
4−
80m1 Y
228.5(1) keV
4.8(3) s
IT (81%)
80 Y
1−
β+ (19%)
80 Sr
80m2 Y
312.6(9) keV
4.7(3) μs
IT
80 Y
(2+)
81 Y
39
42
80.9294543(58)
70.4(10) s
β+
81 Sr
(5/2+)
82 Y
39
43
81.9269302(59)
8.30(20) s
β+
82 Sr
1+
82m1 Y
402.63(14) keV
258(22) ns
IT
82 Y
4−
82m2 Y
507.50(13) keV
148(6) ns
IT
82 Y
6+
83 Y
39
44
82.922484(20)
7.08(8) min
β+
83 Sr
(9/2+)
83m Y
62.04(10) keV
2.85(2) min
β+ (60%)
83 Sr
(3/2−)
IT (40%)
83 Y
84 Y
39
45
83.9206711(46)
39.5(8) min
β+
84 Sr
(6+)
84m1 Y
67.0(2) keV
4.6(2) s
β+
84 Sr
1+
84m2 Y
210.42(16) keV
292(10) ns
IT
84 Y
4−
85 Y
39
46
84.916433(20)
2.68(5) h
β+
85 Sr
(1/2)−
85m1 Y
19.68(17) keV
4.86(20) h
β+
85 Sr
(9/2)+
IT?
85 Y
85m2 Y
266.18(10) keV
178(7) ns
IT
85 Y
(5/2)−
86 Y
39
47
85.914886(15)
14.74(2) h
β+
86 Sr
4−
86m1 Y
218.21(9) keV
47.4(4) min
IT (99.31%)
86 Y
(8+)
β+ (0.69%)
86 Sr
86m2 Y
302.18(9) keV
125.3(55) ns
IT
86 Y
6+
87 Y
39
48
86.9108761(12)
79.8(3) h
β+
87 Sr
1/2−
87m Y
380.82(7) keV
13.37(3) h
IT (98.43%)
87 Y
9/2+
β+ (1.57%)
87 Sr
88 Y
39
49
87.9095013(16)
106.629(24) d
β+
88 Sr
4−
88m1 Y
392.86(9) keV
301(3) μs
IT
88 Y
1+
88m2 Y
674.55(4) keV
13.98(17) ms
IT
88 Y
8+
89 Y[ n 10]
39
50
88.90583816(36)
Stable
1/2−
1.0000
89m Y
908.97(3) keV
15.663(5) s
IT
89 Y
9/2+
90 Y[ n 10]
39
51
89.90714175(38)
64.05(5) h
β−
90 Zr
2−
90m Y
682.01(5) keV
3.226(11) h
IT
90 Y
7+
β− (0.0018%)
90 Zr
91 Y[ n 10]
39
52
90.9072980(20)
58.51(6) d
β−
91 Zr
1/2−
91m Y
555.58(5) keV
49.71(4) min
IT
91 Y
9/2+
β− ?
91 Zr
92 Y
39
53
91.9089458(98)
3.54(1) h
β−
92 Zr
2−
92m Y
807(50)# keV
3.7(5) μs
IT
92 Y
7+#
93 Y
39
54
92.909578(11)
10.18(8) h
β−
93 Zr
1/2−
93m Y
758.719(21) keV
820(40) ms
IT
93 Y
9/2+
94 Y
39
55
93.9115921(68)
18.7(1) min
β−
94 Zr
2−
94m Y
1202.3(10) keV
1.304(12) μs
IT
94 Y
(5+)
95 Y
39
56
94.9128197(73)
10.3(1) min
β−
95 Zr
1/2−
95m Y
1087.6(6) keV
48.6(5) μs
IT
95 Y
9/2+
96 Y
39
57
95.9159093(65)
5.34(5) s
β−
96 Zr
0−
96m1 Y
1540(9) keV
9.6(2) s
β−
96 Zr
8+
96m2 Y
1655.0(11) keV
181(9) ns
IT
96 Y
(6+)
97 Y
39
58
96.9182867(72)
3.75(3) s
β− (99.945%)
97 Zr
1/2−
β− , n (0.055%)
96 Zr
97m1 Y
667.52(23) keV
1.17(3) s
β− (>99.2%)
97 Zr
9/2+
IT (<0.7%)
97 Y
β− , n (0.11%)
96 Zr
97m2 Y
3522.6(4) keV
142(8) ms
IT (94.8%)
97 Y
(27/2−)
β− (5.2%)
97 Zr
98 Y
39
59
97.9223948(85)
548(2) ms
β− (99.67%)
98 Zr
0−
β− , n (0.33%)
97 Zr
98m1 Y
170.78(5) keV
615(8) ns
IT
98 Y
2−
98m2 Y
465.7(7) keV
2.32(8) s
β− (96.56%)
98 Zr
(6,7)+
β− , n (3.44%)
97 Zr
IT?
98 Y
98m3 Y
496.10(11) keV
6.90(54) μs
IT
98 Y
(4)−
98m4 Y
594(10) keV
180(7) ns
IT
98 Y
(3−,4−)
98m5 Y
972.17(20) keV
450(150) ns
IT
98 Y
(8+)
98m6 Y
1181.50(18) keV
762(14) ns
IT
98 Y
(10−)
99 Y
39
60
98.9241608(71)
1.484(7) s
β− (98.23%)
99 Zr
5/2+
β− , n (1.77%)
98 Zr
99m Y
2141.65(19) keV
8.2(4) μs
IT
99 Y
(17/2+)
100 Y
39
61
99.927728(12)
940(30) ms
β−
100 Zr
4+
β− , n?
99 Zr
100m Y
144(16) keV
727(6) ms
β− (98.92%)
100 Zr
1+#
β− , n (1.08%)
99 Zr
101 Y
39
62
100.9301608(76)
426(20) ms
β− (97.7%)
101 Zr
5/2+
β− , n (2.3%)
100 Zr
101m Y
1205.0(10) keV
870(90) ns
IT
101 Y
13/2−#
102 Y
39
63
101.9343285(44)
360(40) ms
β− (>97.4%)
102 Zr
(5−)
β− , n (<2.6%)
101 Zr
102m Y[ n 9]
100(100)# keV
300(100) ms
β− (>97.4%)
102 Zr
(0−,1−)
β− , n (<2.6%)
101 Zr
IT?
102 Y
103 Y
39
64
102.937244(12)
239(12) ms
β− (92.0%)
103 Zr
5/2+#
β− , n (8.0%)
102 Zr
104 Y
39
65
103.94194(22)#
197(4) ms
β− (66%)
104 Zr
(0+,1+)#
β− , n (34%)
103 Zr
β− , 2n?
102 Zr
105 Y
39
66
104.94571(43)#
95(9) ms
β−
105 Zr
5/2+#
β− , n (<82%)
104 Zr
β− , 2n?
103 Zr
106 Y
39
67
105.95084(54)#
75(6) ms
β−
106 Zr
2+#
β− , n?
105 Zr
β− , 2n?
104 Zr
107 Y
39
68
106.95494(54)#
33.5(3) ms
β−
107 Zr
5/2+#
β− , n?
106 Zr
β− , 2n?
105 Zr
108 Y
39
69
107.96052(64)#
30(5) ms
β−
108 Zr
6−#
β− , n?
107 Zr
β− , 2n?
106 Zr
109 Y
39
70
108.96513(75)#
25(5) ms
β−
109 Zr
5/2+#
β− , n?
108 Zr
β− , 2n?
107 Zr
110 Y[ 5]
39
71
111 Y[ 5]
39
72
This table header & footer:
^ m Y – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^
Modes of decay:
^ Bold italics symbol as daughter – Daughter product is nearly stable.
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ a b Order of ground state and isomer is uncertain.
^ a b c Fission product
References
^ "Standard Atomic Weights: Yttrium" . CIAAW . 2021.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi :10.1515/pac-2019-0603 . ISSN 1365-3075 .
^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C . 45 (3): 030003. doi :10.1088/1674-1137/abddaf .
^ a b c Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi :10.1088/1674-1137/abddae .
^ a b Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of 110Zr" . Physical Review C . 103 (1): 014614. Bibcode :2021PhRvC.103a4614S . doi :10.1103/PhysRevC.103.014614 . hdl :10261/260248 . S2CID 234019083 .
Isotope masses from:
Half-life, spin, and isomer data selected from the following sources.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties" , Nuclear Physics A , 729 : 3– 128, Bibcode :2003NuPhA.729....3A , doi :10.1016/j.nuclphysa.2003.11.001
National Nuclear Data Center . "NuDat 2.x database" . Brookhaven National Laboratory .
Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida : CRC Press . ISBN 978-0-8493-0485-9 .
E. V. Marathe (July 1955). "The Half-Life of Yttrium-90". Journal of Scientific & Industrial Research (Vol 14B ed.): 354– 355.
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102