Isothermal coordinates

In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form

where is a positive smooth function. (If the Riemannian manifold is oriented, some authors insist that a coordinate system must agree with that orientation to be isothermal.)

Isothermal coordinates on surfaces were first introduced by Gauss. Korn and Lichtenstein proved that isothermal coordinates exist around any point on a two dimensional Riemannian manifold.

By contrast, most higher-dimensional manifolds do not admit isothermal coordinates anywhere; that is, they are not usually locally conformally flat. In dimension 3, a Riemannian metric is locally conformally flat if and only if its Cotton tensor vanishes. In dimensions > 3, a metric is locally conformally flat if and only if its Weyl tensor vanishes.

Isothermal coordinates on surfaces

In 1822, Carl Friedrich Gauss proved the existence of isothermal coordinates on an arbitrary surface with a real-analytic Riemannian metric, following earlier results of Joseph Lagrange in the special case of surfaces of revolution.[1] The construction used by Gauss made use of the Cauchy–Kowalevski theorem, so that his method is fundamentally restricted to the real-analytic context.[2] Following innovations in the theory of two-dimensional partial differential equations by Arthur Korn, Leon Lichtenstein found in 1916 the general existence of isothermal coordinates for Riemannian metrics of lower regularity, including smooth metrics and even Hölder continuous metrics.[3]

Given a Riemannian metric on a two-dimensional manifold, the transition function between isothermal coordinate charts, which is a map between open subsets of R2, is necessarily angle-preserving. The angle-preserving property together with orientation-preservation is one characterization (among many) of holomorphic functions, and so an oriented coordinate atlas consisting of isothermal coordinate charts may be viewed as a holomorphic coordinate atlas. This demonstrates that a Riemannian metric and an orientation on a two-dimensional manifold combine to induce the structure of a Riemann surface (i.e. a one-dimensional complex manifold). Furthermore, given an oriented surface, two Riemannian metrics induce the same holomorphic atlas if and only if they are conformal to one another. For this reason, the study of Riemann surfaces is identical to the study of conformal classes of Riemannian metrics on oriented surfaces.

By the 1950s, expositions of the ideas of Korn and Lichtenstein were put into the language of complex derivatives and the Beltrami equation by Lipman Bers and Shiing-shen Chern, among others.[4] In this context, it is natural to investigate the existence of generalized solutions, which satisfy the relevant partial differential equations but are no longer interpretable as coordinate charts in the usual way. This was initiated by Charles Morrey in his seminal 1938 article on the theory of elliptic partial differential equations on two-dimensional domains, leading later to the measurable Riemann mapping theorem of Lars Ahlfors and Bers.[5]

Beltrami equation

The existence of isothermal coordinates can be proved[6] by applying known existence theorems for the Beltrami equation, which rely on Lp estimates for singular integral operators of Calderón and Zygmund.[7][8] A simpler approach to the Beltrami equation has been given more recently by Adrien Douady.[9]

If the Riemannian metric is given locally as

then in the complex coordinate , it takes the form

where and are smooth with and . In fact

In isothermal coordinates the metric should take the form

with ρ smooth. The complex coordinate satisfies

so that the coordinates (u, v) will be isothermal if the Beltrami equation

has a diffeomorphic solution. Such a solution has been proved to exist in any neighbourhood where .

Existence via local solvability for elliptic partial differential equations

The existence of isothermal coordinates on a smooth two-dimensional Riemannian manifold is a corollary of the standard local solvability result in the analysis of elliptic partial differential equations. In the present context, the relevant elliptic equation is the condition for a function to be harmonic relative to the Riemannian metric. The local solvability then states that any point p has a neighborhood U on which there is a harmonic function u with nowhere-vanishing derivative.[10]

Isothermal coordinates are constructed from such a function in the following way.[11] Harmonicity of u is identical to the closedness of the differential 1-form defined using the Hodge star operator associated to the Riemannian metric. The Poincaré lemma thus implies the existence of a function v on U with By definition of the Hodge star, and are orthogonal to one another and hence linearly independent, and it then follows from the inverse function theorem that u and v form a coordinate system on some neighborhood of p. This coordinate system is automatically isothermal, since the orthogonality of and implies the diagonality of the metric, and the norm-preserving property of the Hodge star implies the equality of the two diagonal components.

Gaussian curvature

In the isothermal coordinates , the Gaussian curvature takes the simpler form

See also

Notes

  1. ^ Gauss 1825; Lagrange 1779.
  2. ^ Spivak 1999, Theorem 9.18.
  3. ^ Korn 1914; Lichtenstein 1916; Spivak 1999, Addendum 1 to Chapter 9; Taylor 2000, Proposition 3.9.3.
  4. ^ Bers 1958; Chern 1955; Ahlfors 2006, p. 90.
  5. ^ Morrey 1938.
  6. ^ Imayoshi & Taniguchi 1992, pp. 20–21
  7. ^ Ahlfors 2006, pp. 85–115
  8. ^ Imayoshi & Taniguchi 1992, pp. 92–104
  9. ^ Douady & Buff 2000
  10. ^ Taylor 2011, pp. 440–441; Bers, John & Schechter 1979, pp. 228–230
  11. ^ DeTurck & Kazdan 1981

References

  • Ahlfors, Lars V. (1952), "Conformality with respect to Riemannian metrics.", Ann. Acad. Sci. Fenn. Ser. A I, 206: 1–22
  • Ahlfors, Lars V. (2006). Lectures on quasiconformal mappings. University Lecture Series. Vol. 38. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard (Second edition of 1966 original ed.). Providence, RI: American Mathematical Society. doi:10.1090/ulect/038. ISBN 0-8218-3644-7. MR 2241787.
  • Bers, Lipman (1958). Riemann surfaces. Notes taken by Rodlitz, Esther and Pollack, Richard. Courant Institute of Mathematical Sciences at New York University. pp. 15–35.
  • Bers, Lipman; John, Fritz; Schechter, Martin (1979). Partial differential equations. Lectures in Applied Mathematics. Vol. 3A. American Mathematical Society. ISBN 0-8218-0049-3.
  • Chern, Shiing-shen (1955). "An elementary proof of the existence of isothermal parameters on a surface". Proceedings of the American Mathematical Society. 6 (5): 771–782. doi:10.2307/2032933. JSTOR 2032933.
  • DeTurck, Dennis M.; Kazdan, Jerry L. (1981). "Some regularity theorems in Riemannian geometry". Annales Scientifiques de l'École Normale Supérieure. Série 4. 14 (3): 249–260. doi:10.24033/asens.1405. ISSN 0012-9593. MR 0644518..
  • do Carmo, Manfredo P. (2016). Differential geometry of curves & surfaces (Revised and updated second edition of 1976 original ed.). Mineola, NY: Dover Publications, Inc. ISBN 978-0-486-80699-0. MR 3837152. Zbl 1352.53002.
  • Douady, Adrien; Buff, X. (2000), Le théorème d'intégrabilité des structures presque complexes. [Integrability theorem for almost complex structures], London Mathematical Society Lecture Note Series, vol. 274, Cambridge University Press, pp. 307–324

Read other articles:

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: The Raid 1991 film – news · newspapers · books · scholar · JSTOR (June 2016) This article ne...

 

Орбелі Леон Абгаровичвірм. Լևոն Օրբելի Народився 7 (19) липня 1882Цахкадзор, Тифліська губернія, Російська імперіяПомер 9 грудня 1958(1958-12-09)[1][2] (76 років)Ленінград, РРФСР, СРСР[1]Поховання Богословське кладовищеКраїна  Російська імперія СРСР Російська СФРРДі

 

Mutsuki sedang berlayar Sejarah Kekaisaran Jepang Nama MutsukiAsal nama JanuariPembangun Arsenal Angkatan Laut SaseboNomor galangan Perusak No. 19Pasang lunas 21 Mei 1924Diluncurkan 23 Juli 1925Selesai 25 Maret 1926Ganti nama Mutsuki, 1 Agustus 1928Dicoret 1 Oktober 1942Nasib Tenggelam oleh kapal pengebom Amerika, 25 Agustus 1942 Ciri-ciri umum Kelas dan jenis Kapal perusak kelas-MutsukiBerat benaman 1.336 t (1.315 ton panjang) (normal) 1.800 t (1.772 ton panjang) (muat penuh)Panjan...

RongluAdipati kelas utamaInformasi pribadiLahir(1836-04-06)6 April 1836Meninggal11 April 1903(1903-04-11) (umur 67)Beijing, Dinasti QingSuami/istriWanzhen[1]HubunganChangshou (ayah)Zaifeng (menantu lelaki)Puyi (cucu)AnakYoulan (putri)PekerjaanPolitisiKlanGuwalgiyaNama anumertaWenzhong (文忠)Karier militerPihak Dinasti QingPertempuran/perangPemberontakan BoxerSunting kotak info • L • B Ronglu Hanzi tradisional: 榮祿 Hanzi sederhana: 荣禄 Alih aksara Mandar...

 

 Nota: Se procura pela área no estado da Bahia, veja Baía do Iguape. Estância Balneária de Iguape   Município do Brasil   Mar Pequeno visto do Morro do EspiaMar Pequeno visto do Morro do Espia Símbolos Bandeira Brasão de armas Hino Lema Virtvtes Pavlistarvm RetentoDetenho as Virtudes dos Paulistas Gentílico iguapense Localização Localização de Estância Balneária de Iguape em São PauloLocalização de Estância Balneária de Iguape em São Paulo Estânci...

 

Україна наЧемпіонаті світу з легкої атлетики 2015 Пекін22 серпня 2015 – 30 серпня 2015Учасників 57 (20 чоловіків та 37 жінок)МедалейРейтинг 22 Золото Срібло Бронза Загалом 0 1 1 2 Участь у Чемпіонаті світу з легкої атлетики 1993199519971999200120032005200720092011201320152017201920222023 Україна на Че...

2020 studio album by QuebonafideRomantic PsychoStudio album by QuebonafideReleased1 April 2020Recorded2017-2020GenreHip hop, pop, pop-rapLength61:23 (EU Edition) 71:09 (Japan Edition) 41:07 (Romantic Psycho)LabelQueQualityQuebonafide chronology 0,25 mg(2018) Romantic Psycho(2020) Romantic Psycho (stylized in all caps) is the fourth album by Polish rapper Quebonafide. It was released on April 1, 2020 by his own label QueQuality.[1] The release of the album is divided into three...

 

FIS Ski Flying World Championships 2006Official logo for the FIS Ski Flying World Championships 2006.Host cityBad Mitterndorf, AustriaNations17Athletes52Events2Opening12 JanuaryClosing15 JanuaryMain venueKulmWebsiteSkifliegen.at The FIS Ski Flying World Ski Championships 2006 took place on 12–15 January 2006 in Bad Mitterndorf, Austria (The International Ski Federation has location listed as Kulm, the ski jumping venue located in Bad Mitterndorf.) for the fourth time. Bad Mitterndorf hosted...

 

Béatrice DalleDalle, 1999LahirBéatrice Cabarrou19 Desember 1964 (umur 58)Brest, Brittany, PrancisPekerjaanAktrisTahun aktif1986–sekarangSuami/istriJean-François Dalle ​ ​(m. 1985; c. 1988)​ Guénaël Meziani ​ ​(m. 2005; c. 2014)​PasanganAlessandro Gassmann(19??–1998) Béatrice Dalle (née Cabarrou; lahir 19 Desember 1964)[1][2] adalah seorang pemeran perempuan asal...

2013 film by Sarik Andreasyan Sex CompetitionDirected bySarik AndreasyanProduced byGeorgy MalkovSarik AndreasyanGhevond AndreasyanStarringTair MamedovRoman YunusovKonstantin KryukovCinematographyAnton ZenkovichMusic byDarin SysoevGarik PapoyanRelease date 28 February 2013 (2013-02-28) Running time86 minCountryRussiaLanguageRussian Sex Competition (Russian: Что творят мужчины!, romanized: Chto tvoryat muzhchiny!, transl. What Men Do!) is a 2013 Russian...

 

غالاتيا (قمر)    المكتشف ستيفن ساينوت،  وفوياجر 2  تاريخ الاكتشاف 28 يوليو 1989  الأسماء البديلة S/1989 N 4  نصف المحور الرئيسي 61593 كيلومتر  الشذوذ المداري 0.00004   فترة الدوران 0.42874431 يوم  الميل المداري 0.052 درجة  تابع إلى نبتون  نصف القطر 88 كيلومتر[1] ...

 

Alice ChanSinh21 tháng 11 năm 1973 (50 tuổi)Thượng Hải, Trung QuốcQuốc tịchHồng Kông, Trung QuốcNghề nghiệpDiễn viênNăm hoạt động1996–2008; 2012–Tác phẩm nổi bậtKhử tà diệt ma (Tôi có hẹn với cương thi), Thâm cung kếPhối ngẫuNhan Chí Hành (2008–2012)Giải thưởngGiải thưởng thường niên TVB 2018 – Nữ nhân vật được yêu thích nhất (Thâm cung kế) Tên tiếng TrungPhồn...

First edition(publ. Houghton Mifflin Harcourt) The Goliath Bone is the 14th entry in the Mike Hammer series by Mickey Spillane. It was completed by Max Allan Collins, and was first published on October 13, 2008. The Goliath Bone is one of three almost finished Mike Hammer novels that Spillane entrusted Collins to finish before his death in 2006. Plot Hammer is forced to put off retirement and his marriage to his longtime love and secretary, Velda, after he falls into the middle of an internat...

 

Australian entertainer Debra ByrneDebra with her daughter Lucille in 2012BornDebra Anne Byrne (1957-03-30) 30 March 1957 (age 66)Melbourne, Victoria, AustraliaNationalityAustralianOccupationsactresssingerproducervariety entertainerwriterchoreographerYears active1969-presentSpouses David Dudley (m. 1977 – d. 1980) Neil Melville (m. 1989 – d. 1997) Partner Ced Le Meledo (c. 1999–2006) Children3 (including Lucille Le Meledo) Debra Anne Byrne (born 30 March 1957), formerly billed ...

 

Graphic novel Not to be confused with Tales of the Slayer. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tales of the Slayers – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this template message) Tales of the SlayersBook CoverPublication informationPublisherDark ...

В Википедии есть статьи о других людях с именем Луций Тарквиний. Луций Тарквиний Коллатинлат. Lucius Tarquinius Collatinus Дата рождения VI век до н.э. Место рождения неизвестно Дата смерти неизвестно Место смерти неизвестно Страна Древний Рим Род деятельности римский госу...

 

Russian painter Yevsey MoiseyenkoBornYevsey Yevseyevich Moiseyenko(1916-08-28)August 28, 1916Uvarovichi, Gomelsky Uyezd, Mogilev Governorate, Russian EmpireDiedNovember 29, 1988(1988-11-29) (aged 72)Leningrad, RSFSR, Soviet UnionNationalityRussianEducationRepin Institute of ArtsNotable workMothers, Sisters (1967)Cherry (1969)MovementRealismAwardsHero of Socialist Labour (1986) Yevsey Yevseyevich Moiseyenko (Russian: Евсей Евсеевич Моисеенко; 28 August [O.S....

 

French footballer Didier Digard Digard playing for Middlesbrough in 2008Personal informationFull name Didier Frédéric Thierry Digard[1]Date of birth (1986-07-12) 12 July 1986 (age 37)Place of birth Gisors, FranceHeight 1.83 m (6 ft 0 in)Position(s) Defensive midfielderYouth career1995–1996 EF Gisors Bézu1998–2003 Le HavreSenior career*Years Team Apps (Gls)2003–2007 Le Havre 72 (3)2007–2008 Paris Saint-Germain 16 (0)2008–2011 Middlesbrough 32 (0)2010–...

Questa voce o sezione sull'argomento montagne dell'Irlanda non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Monte BrandonIl monte Brandon con le altre cime del gruppo dal Connor PassStato Irlanda Provincia Munster Contea Kerry Altezza953 m s.l.m. Prominenza934 m CatenaGruppo del Brandon / Slieve Mish Coordinate52°14′06″N 10°1...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Machine Robo Mugenbine – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when t...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!