Hyperparameter optimization

In machine learning, hyperparameter optimization[1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.[2]

Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set.[3] The objective function takes a set of hyperparameters and returns the associated loss.[3] Cross-validation is often used to estimate this generalization performance, and therefore choose the set of values for hyperparameters that maximize it.[4]

Approaches

Grid search across different values of two hyperparameters. For each hyperparameter, 10 different values are considered, so a total of 100 different combinations are evaluated and compared. Blue contours indicate regions with strong results, whereas red ones show regions with poor results.

The traditional method for hyperparameter optimization has been grid search, or a parameter sweep, which is simply an exhaustive searching through a manually specified subset of the hyperparameter space of a learning algorithm. A grid search algorithm must be guided by some performance metric, typically measured by cross-validation on the training set[5] or evaluation on a hold-out validation set.[6]

Since the parameter space of a machine learner may include real-valued or unbounded value spaces for certain parameters, manually set bounds and discretization may be necessary before applying grid search.

For example, a typical soft-margin SVM classifier equipped with an RBF kernel has at least two hyperparameters that need to be tuned for good performance on unseen data: a regularization constant C and a kernel hyperparameter γ. Both parameters are continuous, so to perform grid search, one selects a finite set of "reasonable" values for each, say

Grid search then trains an SVM with each pair (C, γ) in the Cartesian product of these two sets and evaluates their performance on a held-out validation set (or by internal cross-validation on the training set, in which case multiple SVMs are trained per pair). Finally, the grid search algorithm outputs the settings that achieved the highest score in the validation procedure.

Grid search suffers from the curse of dimensionality, but is often embarrassingly parallel because the hyperparameter settings it evaluates are typically independent of each other.[4]

Random search across different combinations of values for two hyperparameters. In this example, 100 different random choices are evaluated. The green bars show that more individual values for each hyperparameter are considered compared to a grid search.

Random Search replaces the exhaustive enumeration of all combinations by selecting them randomly. This can be simply applied to the discrete setting described above, but also generalizes to continuous and mixed spaces. A benefit over grid search is that random search can explore many more values than grid search could for continuous hyperparameters. It can outperform Grid search, especially when only a small number of hyperparameters affects the final performance of the machine learning algorithm.[4] In this case, the optimization problem is said to have a low intrinsic dimensionality.[7] Random Search is also embarrassingly parallel, and additionally allows the inclusion of prior knowledge by specifying the distribution from which to sample. Despite its simplicity, random search remains one of the important base-lines against which to compare the performance of new hyperparameter optimization methods.

Methods such as Bayesian optimization smartly explore the space of potential choices of hyperparameters by deciding which combination to explore next based on previous observations.

Bayesian optimization

Bayesian optimization is a global optimization method for noisy black-box functions. Applied to hyperparameter optimization, Bayesian optimization builds a probabilistic model of the function mapping from hyperparameter values to the objective evaluated on a validation set. By iteratively evaluating a promising hyperparameter configuration based on the current model, and then updating it, Bayesian optimization aims to gather observations revealing as much information as possible about this function and, in particular, the location of the optimum. It tries to balance exploration (hyperparameters for which the outcome is most uncertain) and exploitation (hyperparameters expected close to the optimum). In practice, Bayesian optimization has been shown[8][9][10][11] to obtain better results in fewer evaluations compared to grid search and random search, due to the ability to reason about the quality of experiments before they are run.

Gradient-based optimization

For specific learning algorithms, it is possible to compute the gradient with respect to hyperparameters and then optimize the hyperparameters using gradient descent. The first usage of these techniques was focused on neural networks.[12] Since then, these methods have been extended to other models such as support vector machines[13] or logistic regression.[14]

A different approach in order to obtain a gradient with respect to hyperparameters consists in differentiating the steps of an iterative optimization algorithm using automatic differentiation.[15][16][17][18] A more recent work along this direction uses the implicit function theorem to calculate hypergradients and proposes a stable approximation of the inverse Hessian. The method scales to millions of hyperparameters and requires constant memory.[19]

In a different approach,[20] a hypernetwork is trained to approximate the best response function. One of the advantages of this method is that it can handle discrete hyperparameters as well. Self-tuning networks[21] offer a memory efficient version of this approach by choosing a compact representation for the hypernetwork. More recently, Δ-STN[22] has improved this method further by a slight reparameterization of the hypernetwork which speeds up training. Δ-STN also yields a better approximation of the best-response Jacobian by linearizing the network in the weights, hence removing unnecessary nonlinear effects of large changes in the weights.

Apart from hypernetwork approaches, gradient-based methods can be used to optimize discrete hyperparameters also by adopting a continuous relaxation of the parameters.[23] Such methods have been extensively used for the optimization of architecture hyperparameters in neural architecture search.

Evolutionary optimization

Evolutionary optimization is a methodology for the global optimization of noisy black-box functions. In hyperparameter optimization, evolutionary optimization uses evolutionary algorithms to search the space of hyperparameters for a given algorithm.[9] Evolutionary hyperparameter optimization follows a process inspired by the biological concept of evolution:

  1. Create an initial population of random solutions (i.e., randomly generate tuples of hyperparameters, typically 100+)
  2. Evaluate the hyperparameter tuples and acquire their fitness function (e.g., 10-fold cross-validation accuracy of the machine learning algorithm with those hyperparameters)
  3. Rank the hyperparameter tuples by their relative fitness
  4. Replace the worst-performing hyperparameter tuples with new ones generated via crossover and mutation
  5. Repeat steps 2-4 until satisfactory algorithm performance is reached or is no longer improving.

Evolutionary optimization has been used in hyperparameter optimization for statistical machine learning algorithms,[9] automated machine learning, typical neural network [24] and deep neural network architecture search,[25][26] as well as training of the weights in deep neural networks.[27]

Population-based

Population Based Training (PBT) learns both hyperparameter values and network weights. Multiple learning processes operate independently, using different hyperparameters. As with evolutionary methods, poorly performing models are iteratively replaced with models that adopt modified hyperparameter values and weights based on the better performers. This replacement model warm starting is the primary differentiator between PBT and other evolutionary methods. PBT thus allows the hyperparameters to evolve and eliminates the need for manual hypertuning. The process makes no assumptions regarding model architecture, loss functions or training procedures.

PBT and its variants are adaptive methods: they update hyperparameters during the training of the models. On the contrary, non-adaptive methods have the sub-optimal strategy to assign a constant set of hyperparameters for the whole training.[28]

Early stopping-based

Successive halving for eight arbitrary hyperparameter configurations. The approach starts with eight models with different configurations and consecutively applies successive halving until only one model remains.

A class of early stopping-based hyperparameter optimization algorithms is purpose built for large search spaces of continuous and discrete hyperparameters, particularly when the computational cost to evaluate the performance of a set of hyperparameters is high. Irace implements the iterated racing algorithm, that focuses the search around the most promising configurations, using statistical tests to discard the ones that perform poorly.[29][30] Another early stopping hyperparameter optimization algorithm is successive halving (SHA),[31] which begins as a random search but periodically prunes low-performing models, thereby focusing computational resources on more promising models. Asynchronous successive halving (ASHA)[32] further improves upon SHA's resource utilization profile by removing the need to synchronously evaluate and prune low-performing models. Hyperband[33] is a higher level early stopping-based algorithm that invokes SHA or ASHA multiple times with varying levels of pruning aggressiveness, in order to be more widely applicable and with fewer required inputs.

Others

RBF[34] and spectral[35] approaches have also been developed.

Issues with hyperparameter optimization

When hyperparameter optimization is done, the set of hyperparameters are often fitted on a training set and selected based on the generalization performance, or score, of a validation set. However, this procedure is at risk of overfitting the hyperparameters to the validation set. Therefore, the generalization performance score of the validation set (which can be several sets in the case of a cross-validation procedure) cannot be used to simultaneously estimate the generalization performance of the final model. In order to do so, the generalization performance has to be evaluated on a set independent (which has no intersection) of the set (or sets) used for the optimization of the hyperparameters, otherwise the performance might give a value which is too optimistic (too large). This can be done on a second test set, or through an outer cross-validation procedure called nested cross-validation, which allows an unbiased estimation of the generalization performance of the model, taking into account the bias due to the hyperparameter optimization.

See also

References

  1. ^ Matthias Feurer and Frank Hutter. Hyperparameter optimization. In: AutoML: Methods, Systems, Challenges, pages 3–38.
  2. ^ Yang, Li (2020). "On hyperparameter optimization of machine learning algorithms: Theory and practice". Neurocomputing. 415: 295–316. arXiv:2007.15745. doi:10.1016/j.neucom.2020.07.061.
  3. ^ a b Claesen, Marc; Bart De Moor (2015). "Hyperparameter Search in Machine Learning". arXiv:1502.02127 [cs.LG].
  4. ^ a b c Bergstra, James; Bengio, Yoshua (2012). "Random Search for Hyper-Parameter Optimization" (PDF). Journal of Machine Learning Research. 13: 281–305.
  5. ^ Chin-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin (2010). A practical guide to support vector classification. Technical Report, National Taiwan University.
  6. ^ Chicco D (December 2017). "Ten quick tips for machine learning in computational biology". BioData Mining. 10 (35): 35. doi:10.1186/s13040-017-0155-3. PMC 5721660. PMID 29234465.
  7. ^ Ziyu, Wang; Frank, Hutter; Masrour, Zoghi; David, Matheson; Nando, de Feitas (2016). "Bayesian Optimization in a Billion Dimensions via Random Embeddings". Journal of Artificial Intelligence Research. 55: 361–387. arXiv:1301.1942. doi:10.1613/jair.4806. S2CID 279236.
  8. ^ Hutter, Frank; Hoos, Holger; Leyton-Brown, Kevin (2011), "Sequential Model-Based Optimization for General Algorithm Configuration", Learning and Intelligent Optimization (PDF), Lecture Notes in Computer Science, vol. 6683, pp. 507–523, CiteSeerX 10.1.1.307.8813, doi:10.1007/978-3-642-25566-3_40, ISBN 978-3-642-25565-6, S2CID 6944647
  9. ^ a b c Bergstra, James; Bardenet, Remi; Bengio, Yoshua; Kegl, Balazs (2011), "Algorithms for hyper-parameter optimization" (PDF), Advances in Neural Information Processing Systems
  10. ^ Snoek, Jasper; Larochelle, Hugo; Adams, Ryan (2012). "Practical Bayesian Optimization of Machine Learning Algorithms" (PDF). Advances in Neural Information Processing Systems. arXiv:1206.2944. Bibcode:2012arXiv1206.2944S.
  11. ^ Thornton, Chris; Hutter, Frank; Hoos, Holger; Leyton-Brown, Kevin (2013). "Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms" (PDF). Knowledge Discovery and Data Mining. arXiv:1208.3719. Bibcode:2012arXiv1208.3719T.
  12. ^ Larsen, Jan; Hansen, Lars Kai; Svarer, Claus; Ohlsson, M (1996). "Design and regularization of neural networks: The optimal use of a validation set" (PDF). Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop. pp. 62–71. CiteSeerX 10.1.1.415.3266. doi:10.1109/NNSP.1996.548336. ISBN 0-7803-3550-3. S2CID 238874.
  13. ^ Olivier Chapelle; Vladimir Vapnik; Olivier Bousquet; Sayan Mukherjee (2002). "Choosing multiple parameters for support vector machines" (PDF). Machine Learning. 46: 131–159. doi:10.1023/a:1012450327387.
  14. ^ Chuong B; Chuan-Sheng Foo; Andrew Y Ng (2008). "Efficient multiple hyperparameter learning for log-linear models" (PDF). Advances in Neural Information Processing Systems. 20.
  15. ^ Domke, Justin (2012). "Generic Methods for Optimization-Based Modeling" (PDF). Aistats. 22. Archived from the original (PDF) on 2014-01-24. Retrieved 2017-12-09.
  16. ^ Maclaurin, Dougal; Duvenaud, David; Adams, Ryan P. (2015). "Gradient-based Hyperparameter Optimization through Reversible Learning". arXiv:1502.03492 [stat.ML].
  17. ^ Franceschi, Luca; Donini, Michele; Frasconi, Paolo; Pontil, Massimiliano (2017). "Forward and Reverse Gradient-Based Hyperparameter Optimization" (PDF). Proceedings of the 34th International Conference on Machine Learning. arXiv:1703.01785. Bibcode:2017arXiv170301785F.
  18. ^ Shaban, A., Cheng, C. A., Hatch, N., & Boots, B. (2019, April). Truncated back-propagation for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 1723-1732). PMLR.
  19. ^ Lorraine, J., Vicol, P., & Duvenaud, D. (2018). Optimizing Millions of Hyperparameters by Implicit Differentiation. arXiv preprint arXiv:1911.02590.
  20. ^ Lorraine, J., & Duvenaud, D. (2018). Stochastic hyperparameter optimization through hypernetworks. arXiv preprint arXiv:1802.09419.
  21. ^ MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., & Grosse, R. (2019). Self-tuning networks: Bilevel optimization of hyperparameters using structured best-response functions. arXiv preprint arXiv:1903.03088.
  22. ^ Bae, J., & Grosse, R. B. (2020). Delta-stn: Efficient bilevel optimization for neural networks using structured response jacobians. Advances in Neural Information Processing Systems, 33, 21725-21737.
  23. ^ Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055.
  24. ^ Kousiouris G, Cuccinotta T, Varvarigou T (2011). "The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and their prediction through optimized artificial neural networks". Journal of Systems and Software. 84 (8): 1270–1291. doi:10.1016/j.jss.2011.04.013. hdl:11382/361472.
  25. ^ Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, Raju B, Shahrzad H, Navruzyan A, Duffy N, Hodjat B (2017). "Evolving Deep Neural Networks". arXiv:1703.00548 [cs.NE].
  26. ^ Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, Fernando C, Kavukcuoglu K (2017). "Population Based Training of Neural Networks". arXiv:1711.09846 [cs.LG].
  27. ^ Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017). "Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning". arXiv:1712.06567 [cs.NE].
  28. ^ Li, Ang; Spyra, Ola; Perel, Sagi; Dalibard, Valentin; Jaderberg, Max; Gu, Chenjie; Budden, David; Harley, Tim; Gupta, Pramod (2019-02-05). "A Generalized Framework for Population Based Training". arXiv:1902.01894 [cs.AI].
  29. ^ López-Ibáñez, Manuel; Dubois-Lacoste, Jérémie; Pérez Cáceres, Leslie; Stützle, Thomas; Birattari, Mauro (2016). "The irace package: Iterated Racing for Automatic Algorithm Configuration". Operations Research Perspective. 3 (3): 43–58. doi:10.1016/j.orp.2016.09.002. hdl:10419/178265.
  30. ^ Birattari, Mauro; Stützle, Thomas; Paquete, Luis; Varrentrapp, Klaus (2002). "A Racing Algorithm for Configuring Metaheuristics". Gecco 2002: 11–18.
  31. ^ Jamieson, Kevin; Talwalkar, Ameet (2015-02-27). "Non-stochastic Best Arm Identification and Hyperparameter Optimization". arXiv:1502.07943 [cs.LG].
  32. ^ Li, Liam; Jamieson, Kevin; Rostamizadeh, Afshin; Gonina, Ekaterina; Hardt, Moritz; Recht, Benjamin; Talwalkar, Ameet (2020-03-16). "A System for Massively Parallel Hyperparameter Tuning". arXiv:1810.05934v5 [cs.LG].
  33. ^ Li, Lisha; Jamieson, Kevin; DeSalvo, Giulia; Rostamizadeh, Afshin; Talwalkar, Ameet (2020-03-16). "Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization". Journal of Machine Learning Research. 18: 1–52. arXiv:1603.06560.
  34. ^ Diaz, Gonzalo; Fokoue, Achille; Nannicini, Giacomo; Samulowitz, Horst (2017). "An effective algorithm for hyperparameter optimization of neural networks". arXiv:1705.08520 [cs.AI].
  35. ^ Hazan, Elad; Klivans, Adam; Yuan, Yang (2017). "Hyperparameter Optimization: A Spectral Approach". arXiv:1706.00764 [cs.LG].

Read other articles:

Ігор Хіманич Особисті дані Повне ім'я Хіманич Ігор Миколайович Народження 11 червня 1966(1966-06-11) (57 років)   Кривий Ріг, УРСР Зріст 177 см Вага 70 кг Громадянство  СРСР →  Україна Позиція воротар Професіональні клуби* Роки Клуб І (г) 1986 «Зірка» К 2 (-?) 1989 «Колос» Н 4 (-?) 1989...

 

 

Goddess of Yesterday AuthorCaroline B. CooneyCountryUnited StatesLanguageEnglishPublisherDelacorte PressPublication date2002Media typePrint (Hardcover, Paperback)Pages263ISBN978-0-440-22930-8 2002 novel by Caroline B. Cooney based on the Trojan War from Greek mythology Goddess of Yesterday is a 2002 novel by Caroline B. Cooney based on the Trojan War from Greek mythology. The book was nominated for the South Carolina Junior Book Award,[1] and was a 2003 ALA Notable Children's Boo...

 

 

2002 play by Richard Greenberg Take Me OutWritten byRichard GreenbergCharactersDarren LemmingKippy SunderstromMason MarzacShane MungittDavey BattleToddy KoovitzRodriguezMartinezSkipperWilliam R. DanzigerJason ChenierTakeshi KawabataPolicemenDate premiered2002Place premieredDonmar WarehouseLondon, EnglandOriginal languageEnglishSubjectHomophobia, racism, and class in sportGenreDramaSettingA baseball locker room Take Me Out is a play by American playwright Richard Greenberg. After a staging at ...

For other types of electric boiler, see Electric boiler. Electric Steam Boiler on the Training Ship Golden Bear An electric steam boiler is a type of boiler where the steam is generated using electricity, rather than through the combustion of a fuel source. Such boilers are used to generate steam for process purposes in many locations, for example laundries, food processing factories and hospitals. Although they are more expensive to run than gas-fired or oil-fired boilers they are popular be...

 

 

?Hoplosternum Hoplosternum littorale Біологічна класифікація Домен: Ядерні (Eukaryota) Царство: Тварини (Animalia) Підцарство: Справжні багатоклітинні (Eumetazoa) Тип: Хордові (Chordata) Підтип: Черепні (Craniata) Надклас: Щелепні (Gnathostomata) Клас: Променепері (Actinopterygii) Підклас: Новопері (Neopterygii) Інф...

 

 

Kereta api SiliwangiKereta api Siliwangi di Stasiun CianjurInformasi umumJenis layananKereta Api lokalStatusBeroperasiDaerah operasiDaerah Operasi I JakartaPendahuluKA Lokal Cianjuran atau KA Argo Peuyeum (Bisnis/Ekonomi)Mulai beroperasi 8 Februari 2014 (sebagai kereta api aglomerasi) 19 Februari 2016 (sebagai kereta api lokal) Operator saat iniKereta Api IndonesiaLintas pelayananStasiun awalSukabumiJumlah pemberhentianLihatlah di bawahStasiun akhirCipatatJarak tempuh67 kmWaktu tempuh rerataS...

Australian soldier Alex SheppardBornAlexander William Sheppard(1913-06-02)2 June 1913East Melbourne, AustraliaDied11 June 1997(1997-06-11) (aged 84)Sydney, AustraliaNationalityAustralianOccupation(s)Soldier, bookseller, publisher, writerAwardsMilitary Cross Alexander William Sheppard MC (2 June 1913 – 11 June 1997) was an Australian soldier, bookseller, publisher and writer.[1][2][3] Rising to the rank of Colonel during World War II, he won the Military Cross fo...

 

 

Al-IskanLingkunganNegara Arab SaudiProvinsiProvinsi MekkahKotaMekkahZona waktuUTC+3 (EAT) • Musim panas (DST)UTC+3 (EAT) Al-Iskan adalah sebuah lingkungan di kota suci Mekkah di Provinsi Mekkah, tepatnya di sebelah barat Arab Saudi. Referensi lbs MakkahSejarah Garis waktu Quraisy Kenabian Muhammad Muhammad di Makkah Penaklukan Makkah Rasyidin Umayyah Kekhalifahan Ibnu Zubair Pengepungan Makkah (683) Abbasiyah Mamluk Kairo Kesultanan Utsmaniyah Revolusi Arab Kerajaan Hijaz Kek...

 

 

For other uses, see The Killing Jar (disambiguation). 1988 single by Siouxsie and the BansheesThe Killing JarSingle by Siouxsie and the Bansheesfrom the album Peepshow B-side Something Wicked (This Way Comes) Are You Still Dying Darling? ReleasedSeptember 1988GenreAlternative rockLabel Polydor Geffen (US) Songwriter(s) Susan Ballion Peter Edward Clarke Steven Severin Producer(s) Siouxsie and the Banshees Mike Hedges Siouxsie and the Banshees singles chronology Peek-a-Boo (1988) The Killing Ja...

Lego Creator: Гарри Поттер Разработчик Superscape (первая часть) Qube Software (вторая часть) Издатель Lego Media Новый диск Локализатор Селена Интернейшнл Часть серии Lego Creator[d] и Lego Harry Potter[d] Даты выпуска Первая часть: Ноябрь 2001 29 августа 2002 Вторая часть: 6 декабря 2002 Жанр Игра-конструктор ст...

 

 

South Korean racewalker In this Korean name, the family name is Kim. Kim Hyun-subKim Hyun-sub in 2013Personal informationBorn (1985-05-31) May 31, 1985 (age 38)Sokcho, South KoreaHeight1.75 m (5 ft 9 in)Weight53 kg (117 lb)SportCountry South KoreaSportAthleticsEvent20km Race Walk Kim Hyun-sub (Korean: 김현섭; Hanja: Kim Hyeonseob, Korean pronunciation: [kim.ɦjʌn.sʌp̚] or [kim] [hjʌn.sʌp̚]; born May 31, ...

 

 

This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (November 2020) Comics character LionheartLionheart.Art by Olivier Coipel.Publication informationPublisherMarvel ComicsFirst appearanceThe Avengers vol. 3 #77 (March 2004)Created byChuck Austen (Writer)Olivier Coipel (Artist)In-story informationAlter egoKelsey Leigh KirklandSpeciesHuman mutateTeam aff...

Series of tennis tournaments US Open Series logo. The US Open Series is the name given by the United States Tennis Association (USTA) to a series of North American professional tennis tournaments leading up to and including the US Open. It is part of the North American hard court season. Emirates sponsored the series in the past, under a deal in place from 2012 to 2016.[1] The series was initially organized in 2004 as a way to focus more attention on American tennis tournaments by get...

 

 

Mikoyan MiG-ATMiG-AT 81 and 83TipeAdvanced trainer / light attackTerbang perdanaMarch 16, 1996StatusUnder development Mikoyan-Gurevich MiG-AT adalah pesawat jet latih (trainer) dari Rusia yang pertama terbang pada tahun 1996, pesawat jet ini bersama dengan Yak AT akan dipilih salah satu oleh AU Rusia untuk menggantikan jet Aero L-29 dan jet Aero L-39. AT kepanjangan dari advanced trainer (latih lanjut) Desain Mikoyan-Gurevich MiG-AT adalah pesawat jet latih (trainer) Rusia yang terbang pertam...

 

 

French pastry Conversation tartTypetartCoursedessertPlace of originFranceAssociated cuisineFrenchInventedlate 18th centuryMain ingredients Flour Sugar Butter Almonds Cream Similar dishes Galette des rois Jésuite A conversation tart (French: tarte conversation) is a type of pastry made with puff pastry that is filled with frangipane cream and topped with royal icing.[1] The recipe was created in the late 18th century to celebrate the publication of les Conversations d'Émilie by Louis...

Anionic polyelectrolyte polymer Carbomer redirects here. For the exotic molecules expanded by insertion of two-carbon units, see Carbo-mer. Poly(acrylic acid) Names IUPAC name Poly(acrylic acid), poly(1-carboxyethylene) Other names PAA, PAAc, Acrysol, Acumer, Alcosperse, Aquatreat, Carbomer, Sokalan Identifiers CAS Number 9003-01-4 Y ChEBI CHEBI:51133 ChemSpider none ECHA InfoCard 100.115.375 EC Number 618-347-7 KEGG C19501 N UNII 73861X4K5F (8000 MW) N CompTox Dashboard (...

 

 

Mayor اسطنبولİstanbul Büyükşehir Belediye Başkanı شاغل المنصب أكرم إمام أوغلي منذ 27 June 2019 اللقب No courtesy or style ascribed عن المنصب مدة الولاية Five years, renewable تأسيس المنصب 13 July 185511 July 195826 March 1984(Büyükşehir municipality) الموقع الرسمي ibb.istanbul/icerik/baskan-ozgecmis تعديل مصدري - تعديل   القائمة التالية هي رؤساء بلدية اسطن...

 

 

Adamu MaulanaRayuwaHaihuwa Surabaya, 26 ga Maris, 1997 (27 shekaru)Sana'aSana'a ɗan wasan ƙwallon ƙafa HanyaƘungiyoyi Shekaru Wasanni da ya/ta buga Ƙwallaye   Persebaya Surabaya (en) -   Adam Maulana (an haife shi a ranan 26 ga watan Maris shekarar 1997) ɗan wasan ƙwallon ƙafa ne ɗan ƙasar Indonesiya wanda ke taka leda a matsayin mai tsaron baya ga Persiraja Banda Aceh . Girmamawa Kulob Persebaya Surabaya Laliga 2 : 2017 Manazarta Hanyoyin haɗi na waje Ada...

Jangan dikelirukan dengan Markas Latihan Tentera Darat Ke-7 atau Tentera Darat Eropah Amerika Syarikat. Tentera Darat Ketujuh A.S.Insignia Tentera Darat Ke-7 AS.Aktif1943–451950–kini (Tentera Darat Eropah Amerika Syarikat)Negara Amerika SyarikatKesetiaan Kenteteraan Amerika SyarikatMotoPyramid of Power! (rasmi), Seven Steps to Hell! (tidak rasmi)[1][2]KomanderKomanderterkenalGeorge S. PattonMark W. ClarkAlexander PatchTanda kebesaranInsignia[3]Flag Tenter...

 

 

Esto es un archivo de entradas pasadas. Por favor, no edites los contenidos de esta página. Si deseas comenzar una nueva discusión o continuar una antigua, por favor, hazlo en la página actual. Comentario: Si por alguna razón decides leer los mensajes de otros usuarios en este, mi archivo de discusiones de enero a junio de 2013, no te sorprendas ni te confundas, ya que aquí he incluido mi «parte» en las «conversaciones» que he tenido con otros usuarios (tomada de sus páginas de dis...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!