Horn function
In the theory of special functions in mathematics , the Horn functions (named for Jakob Horn ) are the 34 distinct convergent hypergeometric series of order two (i.e. having two independent variables), enumerated by Horn (1931) (corrected by Borngässer (1933) ). They are listed in (Erdélyi et al. 1953 , section 5.7.1). B. C. Carlson[ 1] revealed a problem with the Horn function classification scheme.[ 2]
The total 34 Horn functions can be further categorised into 14 complete hypergeometric functions and 20 confluent hypergeometric functions. The complete functions, with their domain of convergence, are:
F
1
(
α α -->
;
β β -->
,
β β -->
′
;
γ γ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
+
n
(
β β -->
)
m
(
β β -->
′
)
n
(
γ γ -->
)
m
+
n
z
m
w
n
m
!
n
!
/
;
|
z
|
<
1
∧ ∧ -->
|
w
|
<
1
{\displaystyle F_{1}(\alpha ;\beta ,\beta ';\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1}
F
2
(
α α -->
;
β β -->
,
β β -->
′
;
γ γ -->
,
γ γ -->
′
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
+
n
(
β β -->
)
m
(
β β -->
′
)
n
(
γ γ -->
)
m
(
γ γ -->
′
)
n
z
m
w
n
m
!
n
!
/
;
|
z
|
+
|
w
|
<
1
{\displaystyle F_{2}(\alpha ;\beta ,\beta ';\gamma ,\gamma ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|<1}
F
3
(
α α -->
,
α α -->
′
;
β β -->
,
β β -->
′
;
γ γ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
(
α α -->
′
)
n
(
β β -->
)
m
(
β β -->
′
)
n
(
γ γ -->
)
m
+
n
z
m
w
n
m
!
n
!
/
;
|
z
|
<
1
∧ ∧ -->
|
w
|
<
1
{\displaystyle F_{3}(\alpha ,\alpha ';\beta ,\beta ';\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha ')_{n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1}
F
4
(
α α -->
;
β β -->
;
γ γ -->
,
γ γ -->
′
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
+
n
(
β β -->
)
m
+
n
(
γ γ -->
)
m
(
γ γ -->
′
)
n
z
m
w
n
m
!
n
!
/
;
|
z
|
+
|
w
|
<
1
{\displaystyle F_{4}(\alpha ;\beta ;\gamma ,\gamma ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m+n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;{\sqrt {|z|}}+{\sqrt {|w|}}<1}
G
1
(
α α -->
;
β β -->
,
β β -->
′
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
+
n
(
β β -->
)
n
− − -->
m
(
β β -->
′
)
m
− − -->
n
z
m
w
n
m
!
n
!
/
;
|
z
|
+
|
w
|
<
1
{\displaystyle G_{1}(\alpha ;\beta ,\beta ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m+n}(\beta )_{n-m}(\beta ')_{m-n}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|<1}
G
2
(
α α -->
,
α α -->
′
;
β β -->
,
β β -->
′
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
(
α α -->
′
)
n
(
β β -->
)
n
− − -->
m
(
β β -->
′
)
m
− − -->
n
z
m
w
n
m
!
n
!
/
;
|
z
|
<
1
∧ ∧ -->
|
w
|
<
1
{\displaystyle G_{2}(\alpha ,\alpha ';\beta ,\beta ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m}(\alpha ')_{n}(\beta )_{n-m}(\beta ')_{m-n}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1}
G
3
(
α α -->
,
α α -->
′
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
n
− − -->
m
(
α α -->
′
)
2
m
− − -->
n
z
m
w
n
m
!
n
!
/
;
27
|
z
|
2
|
w
|
2
+
18
|
z
|
|
w
|
± ± -->
4
(
|
z
|
− − -->
|
w
|
)
<
1
{\displaystyle G_{3}(\alpha ,\alpha ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2n-m}(\alpha ')_{2m-n}{\frac {z^{m}w^{n}}{m!n!}}/;27|z|^{2}|w|^{2}+18|z||w|\pm 4(|z|-|w|)<1}
H
1
(
α α -->
;
β β -->
;
γ γ -->
;
δ δ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
− − -->
n
(
β β -->
)
m
+
n
(
γ γ -->
)
n
(
δ δ -->
)
m
z
m
w
n
m
!
n
!
/
;
4
|
z
|
|
w
|
+
2
|
w
|
− − -->
|
w
|
2
<
1
{\displaystyle H_{1}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m+n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z||w|+2|w|-|w|^{2}<1}
H
2
(
α α -->
;
β β -->
;
γ γ -->
;
δ δ -->
;
ϵ ϵ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
− − -->
n
(
β β -->
)
m
(
γ γ -->
)
n
(
δ δ -->
)
n
(
δ δ -->
)
m
z
m
w
n
m
!
n
!
/
;
1
/
|
w
|
− − -->
|
z
|
<
1
{\displaystyle H_{2}(\alpha ;\beta ;\gamma ;\delta ;\epsilon ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}(\gamma )_{n}(\delta )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;1/|w|-|z|<1}
H
3
(
α α -->
;
β β -->
;
γ γ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
+
n
(
β β -->
)
n
(
γ γ -->
)
m
+
n
z
m
w
n
m
!
n
!
/
;
|
z
|
+
|
w
|
2
− − -->
|
w
|
<
0
{\displaystyle H_{3}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|^{2}-|w|<0}
H
4
(
α α -->
;
β β -->
;
γ γ -->
;
δ δ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
+
n
(
β β -->
)
n
(
γ γ -->
)
m
(
δ δ -->
)
n
z
m
w
n
m
!
n
!
/
;
4
|
z
|
+
2
|
w
|
− − -->
|
w
|
2
<
1
{\displaystyle H_{4}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n}}{(\gamma )_{m}(\delta )_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z|+2|w|-|w|^{2}<1}
H
5
(
α α -->
;
β β -->
;
γ γ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
+
n
(
β β -->
)
n
− − -->
m
(
γ γ -->
)
n
z
m
w
n
m
!
n
!
/
;
16
|
z
|
2
− − -->
36
|
z
|
|
w
|
± ± -->
(
8
|
z
|
− − -->
|
w
|
+
27
|
z
|
|
w
|
2
)
<
− − -->
1
{\displaystyle H_{5}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n-m}}{(\gamma )_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;16|z|^{2}-36|z||w|\pm (8|z|-|w|+27|z||w|^{2})<-1}
H
6
(
α α -->
;
β β -->
;
γ γ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
− − -->
n
(
β β -->
)
n
− − -->
m
(
γ γ -->
)
n
z
m
w
n
m
!
n
!
/
;
|
z
|
|
w
|
2
+
|
w
|
<
1
{\displaystyle H_{6}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2m-n}(\beta )_{n-m}(\gamma )_{n}{\frac {z^{m}w^{n}}{m!n!}}/;|z||w|^{2}+|w|<1}
H
7
(
α α -->
;
β β -->
;
γ γ -->
;
δ δ -->
;
z
,
w
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
− − -->
n
(
β β -->
)
n
(
γ γ -->
)
n
(
δ δ -->
)
m
z
m
w
n
m
!
n
!
/
;
4
|
z
|
+
2
/
|
s
|
− − -->
1
/
|
s
|
2
<
1
{\displaystyle H_{7}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}(\beta )_{n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z|+2/|s|-1/|s|^{2}<1}
while the confluent functions include:
Φ Φ -->
1
(
α α -->
;
β β -->
;
γ γ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
+
n
(
β β -->
)
m
(
γ γ -->
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle \Phi _{1}\left(\alpha ;\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Φ Φ -->
2
(
β β -->
,
β β -->
′
;
γ γ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
β β -->
)
m
(
β β -->
′
)
n
(
γ γ -->
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle \Phi _{2}\left(\beta ,\beta ';\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Φ Φ -->
3
(
β β -->
;
γ γ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
β β -->
)
m
(
γ γ -->
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle \Phi _{3}\left(\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\beta )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Ψ Ψ -->
1
(
α α -->
;
β β -->
;
γ γ -->
,
γ γ -->
′
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
+
n
(
β β -->
)
m
(
γ γ -->
)
m
(
γ γ -->
′
)
n
x
m
y
n
m
!
n
!
{\displaystyle \Psi _{1}\left(\alpha ;\beta ;\gamma ,\gamma ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Ψ Ψ -->
2
(
α α -->
;
γ γ -->
,
γ γ -->
′
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
+
n
(
γ γ -->
)
m
(
γ γ -->
′
)
n
x
m
y
n
m
!
n
!
{\displaystyle \Psi _{2}\left(\alpha ;\gamma ,\gamma ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Ξ Ξ -->
1
(
α α -->
,
α α -->
′
;
β β -->
;
γ γ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
(
α α -->
′
)
n
(
β β -->
)
m
(
γ γ -->
)
m
+
n
(
γ γ -->
′
)
n
x
m
y
n
m
!
n
!
{\displaystyle \Xi _{1}\left(\alpha ,\alpha ';\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha ')_{n}(\beta )_{m}}{(\gamma )_{m+n}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Ξ Ξ -->
2
(
α α -->
;
β β -->
;
γ γ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
(
α α -->
)
m
(
γ γ -->
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle \Xi _{2}\left(\alpha ;\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Γ Γ -->
1
(
α α -->
;
β β -->
,
β β -->
′
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
(
β β -->
)
n
− − -->
m
(
β β -->
′
)
m
− − -->
n
x
m
y
n
m
!
n
!
{\displaystyle \Gamma _{1}\left(\alpha ;\beta ,\beta ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m}(\beta )_{n-m}(\beta ')_{m-n}{\frac {x^{m}y^{n}}{m!n!}}}
Γ Γ -->
2
(
β β -->
,
β β -->
′
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
β β -->
)
n
− − -->
m
(
β β -->
′
)
m
− − -->
n
x
m
y
n
m
!
n
!
{\displaystyle \Gamma _{2}\left(\beta ,\beta ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\beta )_{n-m}(\beta ')_{m-n}{\frac {x^{m}y^{n}}{m!n!}}}
H
1
(
α α -->
;
β β -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
− − -->
n
(
β β -->
)
m
+
n
(
δ δ -->
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{1}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m+n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
2
(
α α -->
;
β β -->
;
γ γ -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
− − -->
n
(
β β -->
)
m
(
γ γ -->
)
n
(
δ δ -->
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{2}\left(\alpha ;\beta ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}(\gamma )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
3
(
α α -->
;
β β -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
− − -->
n
(
β β -->
)
m
(
δ δ -->
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{3}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
4
(
α α -->
;
γ γ -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
− − -->
n
(
γ γ -->
)
n
(
δ δ -->
)
n
x
m
y
n
m
!
n
!
{\displaystyle H_{4}\left(\alpha ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\gamma )_{n}}{(\delta )_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
5
(
α α -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
− − -->
n
(
δ δ -->
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{5}\left(\alpha ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
6
(
α α -->
;
γ γ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
+
n
(
γ γ -->
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle H_{6}\left(\alpha ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
7
(
α α -->
;
γ γ -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
+
n
(
γ γ -->
)
m
(
δ δ -->
)
n
x
m
y
n
m
!
n
!
{\displaystyle H_{7}\left(\alpha ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}}{(\gamma )_{m}(\delta )_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
8
(
α α -->
;
β β -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
− − -->
n
(
β β -->
)
n
− − -->
m
x
m
y
n
m
!
n
!
{\displaystyle H_{8}\left(\alpha ;\beta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2m-n}(\beta )_{n-m}{\frac {x^{m}y^{n}}{m!n!}}}
H
9
(
α α -->
;
β β -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
− − -->
n
(
β β -->
)
n
(
δ δ -->
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{9}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}(\beta )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
10
(
α α -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
2
m
− − -->
n
(
δ δ -->
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{10}\left(\alpha ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
11
(
α α -->
;
β β -->
;
γ γ -->
;
δ δ -->
;
x
,
y
)
≡ ≡ -->
∑ ∑ -->
m
=
0
∞ ∞ -->
∑ ∑ -->
n
=
0
∞ ∞ -->
(
α α -->
)
m
− − -->
n
(
β β -->
)
n
(
γ γ -->
)
n
(
δ δ -->
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{11}\left(\alpha ;\beta ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
Notice that some of the complete and confluent functions share the same notation.
References
Borngässer, Ludwig (1933), Über hypergeometrische funkionen zweier Veränderlichen , Dissertation, Darmstadt
Erdélyi, Arthur; Magnus, Wilhelm ; Oberhettinger, Fritz; Tricomi, Francesco G. (1953), Higher transcendental functions. Vol I (PDF) , McGraw-Hill Book Company, Inc., New York-Toronto-London, MR 0058756 , archived from the original (PDF) on 2011-08-11, retrieved 2015-08-23
Horn, J. (1931), "Hypergeometrische Funktionen zweier Veränderlichen" , Mathematische Annalen , 105 (1): 381– 407, doi :10.1007/BF01455825 , S2CID 179177588
J. Horn Math. Ann. 111 , 637 (1933)
Srivastava, H. M.; Karlsson, Per W. (1985), Multiple Gaussian hypergeometric series , Ellis Horwood Series: Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-602-7 , MR 0834385