Massey returned to University College London, in October 1945 to find it badly damaged by bombing, and the Mathematics Department in dingy temporary accommodation. In 1950 he was appointed Quain Professor of Physics and head of the University College London Physics Department. The department was merged with Astronomy in 1973, but he remained its head until he retired in 1975. Under his direction, the Physics Department was reoriented towards particle physics and upper atmosphere physics. He worked with the Woomera Rocket Range to develop British Skylark rocket, and was on the governing board of the Anglo-Australian Telescope. He was the chairman of the Committee on Space Research (COSPAR) from 1959 to 1978, and of its British national chapter. He was also the first Chairman of the European Space Sciences Committee, and helped found the European Space Research Organization and the Mullard Space Science Laboratory at University College London.
Early life
Harrie Stewart Wilson Massey was born in Invermay, Victoria, Australia,[note 1] on 16 May 1908, the only child of Harrie Stewart Massey, a miner, and his wife Eleanor Elizabeth née Wilson.[2] He grew up in the rural community of Hoddles Creek, and enrolled in the local state school in 1913. He received his Merit Certificate, normally awarded after completing the eighth grade, when he was nine, but due to his age he still had to stay there for another three years. He won a scholarship to University High School, and moved to Parkville with his mother in 1920. At University High School he was president of the Science Club and vice captain of the cricket team.[1]
Career
At the age of 16, Massey won a scholarship to the University of Melbourne, which he entered in 1925. He had thoughts of studying chemistry, but was impressed by the physics lectures given by Eric Hercus. This was a stroke of luck; first year physics lectures were normally given by Thomas Laby. Massey recalled in 1980 that "in a fairly wide experience I would rate [Laby] the worst lecturer I have heard".[1] At the University he played cricket, billiards, tennis and baseball, which he played for the University. He was awarded his Bachelor of Arts (BSc) in physics with first class honours in 1928, and a Bachelor of Arts (BA) in mathematics in 1929. At a meeting of the Australasian Association for the Advancement of Science in Perth in August 1925, he met a schoolteacher, Jessica Elizabeth Bruce. They were married on 11 January 1928 at the district registrar's office in Perth.[2] They had a daughter, Pamela Lois.[1]
Fowler was appointed as Massey's supervisor although it was clear that he did not need any supervision per se. Massey obtained his PhD on The Collisions of Material Particles in 1932.[5][6] Shortly afterwards, he co-authored a book on atomic collision processes with Nevill Mott, Theory of Atomic Collisions (1933).[7] He also applied the theory of collisions to models of neutron structure. At the Cavendish laboratory, he also played hockey with Cockcroft, and cricket for the Cavendish Cricket Club, becoming team captain in his final year there.[1]
In June 1933, Massey became an independent lecturer in Mathematical Physics at the Queen's University of Belfast. He was the only member of the department until R. A. Buckingham arrived in 1934. Despite having to give nine lectures a week,[1] he found time to write his second book, Negative Ions (1938), and began working on upper atmospheric physics.[8] Frustrated with the tiresome and time-consuming process of calculation, he had his physics workshop superintendent, John Wylie, build him a small-scale differential analyzer, an analog computer that could solve differential equations, for just £50.[9] This was used to solve problems related to low temperature helium,[10][11] and the photo-ionisation of oxygen in the upper atmosphere.[12][13]
Massey was appointed Goldsmid Professor of Applied Mathematics at University College London, in 1938, following the death of L. N. G. Filon the previous year. He brought with him Buckingham, now an 1851 Exhibition Scholar himself, and David Bates, a promising graduate student. They brought the differential analyser with them to London, where it was destroyed by an air raid during the Second World War.[1]
Second World War
Soon after the outbreak of World War II on 1 September 1939, the Germans began an airdropped naval mine campaign against Britain. The results were devastating. Nineteen ships totaling 59,027 tons were sunk by mines in October, and 27 totaling 120,958 tons in November, along with the destroyerHMS Blanche. Many more ships were damaged, including the cruiserHMS Belfast.[14] The nature of the mines was initially unknown, but on 23 November 1939, a bomb disposal team under Lieutenant Commander J. G. D. Ouvry recovered an intact aerial mine from a mudflat at Shoeburyness, and the threat was revealed to be a magnetic mine.[14][15]
In December 1939, Massey joined a group at the Admiralty Research Laboratory in Teddington led by Stephen Butterworth. They were soon joined by a number of other physicists, including Bates, Buckingham, Francis Crick and John Gunn. Together, they came up with a series of countermeasures that enable the Navy to successfully sweep the mines. With this in hand, Massey became Deputy Chief Scientist to the Scientific Section of Mine Design Department at the Admiralty Mining Establishment in Havant in early 1941. This time, the job was to create mines as good as the German ones. Massey brought his team with him. While Bates worked on packaging to protect the mine when it was dropped from an aircraft, Buckingham and Gunn calculated its theoretical effectiveness, and Crick designed the circuitry. Their mine codenamed MX, was soon in service, and the group turned its attention to developing acoustic or pressure mines. On the retirement of A. B. Wood in 1943, Massey became Chief Scientist at Havant.[1]
After the August 1943 Quebec Agreement merged the British and American atomic bomb projects, Mark Oliphant persuaded the Admiralty to release Massey to work on the Manhattan Project. In November 1943, Massey set out with Oliphant for the Radiation Laboratory at the University of California in Berkeley in a B-24 Liberator bomber.[16] The Radiation Laboratory's part was to develop an electromagnetic isotope separation process. Massey was in charge of its Theoretical Group, which included American David Bohm and Australian Eric Burhop. They studied the characteristics of electric discharges in magnetic fields, today known as Bohm diffusion, and studied the ionization of uranium compounds used as feed in the electromagnetic uranium enrichment process such as uranium tetrachloride (UCl4) and uranium hexafluoride (UF6).[17] Oliphant returned to Britain in March 1945,[16] and was replaced as head of the British mission in Berkeley by Massey.[18] Wartime papers produced by the group were collected and published in The Characteristics of Electrical Discharges in Magnetic Fields (1949).[19]
Later life
Massey returned to University College London, in October 1945 to find it badly damaged by bombing, and the Mathematics Department in dingy temporary accommodation. He was allowed to pick his own lecturers, so he chose Bates, Burhop, Buckingham and Gunn. While they had to teach mathematics, they were free to choose their own research topics, so they chose to research physics, carrying out physical experiments.[1] This situation lasted until 1950, when Edward Andrade retired, and Massey was appointed Quain Professor of Physics and head of the University College London, Physics Department.[8] The department was merged with Astronomy in 1973, but he remained its head until he retired in 1975.[20][21] He also served as University College London's Vice-Provost from 1969 to 1973.[2]
When Massey took over the Physics Department, most of his physicists, including Bates, Buckingham, Burhop and Robert Boyd, moved with him. Like the Mathematics Department, it was still in temporary accommodation owing to bomb damage during the war. A new building was under construction, but to develop the technical infrastructure, Massey hired Harry Tomlinson, who had worked for him in the British Mission in Berkeley. The Department acquired several accelerators, including a 20 MeV synchrotron from the Atomic Energy Authority.[1] Dick Jennings and Franz Heymann built two microtrons.[22] Under Massey, the Physics Department moved away from researching the physics of metals and liquids, and focused on particle physics and upper atmosphere physics.[20] Massey saw the potential of computers. He arranged with Andrew Booth for a copy of his All Purpose Electronic Computer, and recruited two programmers, Joan Lawson and Jane Wallace. When the University of London established a computing unit, Buckingham left to head it.[1]
Space science also gave Massey an excuse to visit Australia; he made some twenty trips. He was involved in the testing of balloons for upper atmosphere research at the University of Melbourne's site in Mildura, Victoria. As chairman of the Rocket Subcommittee of the Royal Society's Gassiot Committee, he visited the Weapons Research Establishment near Adelaide and the Woomera Rocket Range to discuss collaboration on the British Skylark rocket, which was test fired from Woomera in 1957. He sought to develop a UK space program in cooperation in space with Australia, the United States and European countries. He was successful in building international cooperation, although his Black Knight project was cancelled in favour of Black Arrow,[1] which launched Prospero, the only satellite launched with a British launch vehicle, from Woomera in 1971.[25] He was involved in the negotiations leading to the establishment of the Anglo-Australian Telescope at Siding Spring Mountain in New South Wales. He was a United Kingdom member and deputy chairman of the telescope's governing board from 1975 to 1980, and chairman from 1980 to 1983.[2]
Massey received honorary doctorates from both Queens University Belfast (1955)[26] and Heriot-Watt University (1975).[27]
Hoddles Creek Primary School, the state school attended by Massey during his childhood, named Massey House (one of the school's four houses) in his honour. A pine tree planted by Massey on the school grounds in 1937 remains, as well as a plaque commemorating Massey's achievements.
^Bibliographical Memoirs of the Royal Society says he was born in St Kilda, Victoria,[1] but the Australian Dictionary of Biography says Invermay, Victoria.[2]
^Massey, H. S. W.; Hamilton, J.; Buckingham, R. A. (10 October 1941). "The Low-Temperature Properties of Gaseous Helium II". Proceedings of the Royal Society of London A: Mathematical and Physical Sciences. 179 (977): 103–122. Bibcode:1941RSPSA.179..103B. doi:10.1098/rspa.1941.0082. S2CID96039164.
^Massey, H. S. W. (22 December 1937). "Dissociation, Recombination and Attachment Processes in the Upper Atmosphere". Proceedings of the Royal Society of London A: Mathematical and Physical Sciences. 163 (915): 542–553. Bibcode:1937RSPSA.163..542M. doi:10.1098/rspa.1937.0243.
^Bates, D. R.; Buckingham, R. A.; Massey, H. S. W.; Unwin, J. J. (3 April 1939). "Dissociation, Recombination and Attachment Processes in the Upper Atmosphere II. The Rate of Recombination". Proceedings of the Royal Society of London A: Mathematical and Physical Sciences. 170 (942): 322–340. Bibcode:1939RSPSA.170..322B. doi:10.1098/rspa.1939.0035. S2CID97373737.
^ abRoskill, S. W. (1954). The War at Sea, 1939–1945. Vol. 1, The Defensive. London: H.M.S.O. p. 100.
^ abCockburn, Stewart; Ellyard, David (1981). Oliphant, the Life and Times of Sir Mark Oliphant. Adelaide: Axiom Books. pp. 113–122. ISBN978-0-9594164-0-4.
^Whiteoak, J. B. (1987). "Book-Review - History of British Space Science by H. Massey and M. O. Robins". Proceedings of the Astronomical Society of Australia. 7 (1): 105. Bibcode:1987PASA....7..105M. doi:10.1017/S1323358000021974.