A halide ion is a halogen atom bearing a negative charge. The common halide anions are fluoride (F−), chloride (Cl−), bromide (Br−), and iodide (I−). Such ions are present in many ionic halide salts. Halide minerals contain halides. All these halide anions are colorless. Halides also form covalent bonds, examples being colorless TiF4, colorless TiCl4, orange TiBr4, and brown TiI4. The heavier members TiCl4, TiBr4, TiI4 can be distilled readily because they are molecular. The outlier is TiF4, m.p. 284 °C, because it has a polymeric structure. Fluorides often differ from the heavier halides.[3]
Reactions
Redox
Halides cannot be reduced under the usual laboratory conditions, but they all can be oxidized to the parent halogens, which are diatomic. Especially for iodide and less so for the lighter halides, intermediates can be observed and isolated. Best characterized is triiodide. Many related species are known, including a host of polyiodides.
Protonation
Halides are conjugate bases of hydrogen halides, which are all gases. When the protonation is conducted in aqueous solution, hydrohalic acids are produced.
Reaction with silver ions
Halide salts such as KCl, KBr and KI are highly soluble in water to give colorless solutions. The solutions react readily with a solution of silver nitrateAgNO3. These three halides form solid precipitates:[4]