Friedrich Hund

Friedrich Hund
Friedrich Hund, Göttingen, in the 1920s
Born4 February 1896 (1896-02-04)
Died31 March 1997 (1997-04-01) (aged 101)
NationalityGerman
Known forMolecular orbital theory
Quantum chemistry
Quantum tunneling
Hund's cases
Hund's rule
Hund's rules
AwardsMax Planck Medal (1943)
Otto Hahn Prize for Chemistry and Physics (1974)
Scientific career
FieldsPhysics
InstitutionsUniversity of Göttingen
University of Rostock
Leipzig University
University of Jena
Frankfurt University
Doctoral advisorMax Born
Doctoral studentsHarry Lehmann
Carl Friedrich von Weizsäcker
Jürgen Schnakenberg
Edward Teller

Friedrich Hermann Hund (4 February 1896 – 31 March 1997) was a German physicist from Karlsruhe known for his work on atoms and molecules.[1] He is known for the Hund's rules to predict the electron configuration of chemical elements. His work on Hund's cases and molecular orbital theory allowed to understand the structure of molecules.

Scientific career

Hund worked with such prestigious physicists as Erwin Schrödinger, Paul Dirac, Werner Heisenberg, Max Born, and Walther Bothe. At that time, he was Born's assistant, working with quantum interpretation of band spectra of diatomic molecules.

Robert Mulliken and Friedrich Hund, Chicago, 1929

After his studies of mathematics, physics, and geography in Marburg and Göttingen, he worked as a private lecturer for theoretical physics in the University of Göttingen (1925), professor in the University of Rostock (1927), Leipzig University (1929), University of Jena (1946), University Frankfurt (1951) and from 1957 again in Göttingen. Additionally, he stayed in Copenhagen (1926) with Niels Bohr and lectured on the atom at Harvard University (1928). He published more than 250 papers and essays in total. Hund made pivotal contributions to quantum theory - especially concerning the structure of the atom and of molecular spectra.

In fact, Robert S. Mulliken, who was awarded the 1966 Nobel Prize in Chemistry for molecular orbital theory, always proclaimed the great influence Hund's work had on his own and that he would have gladly shared the Nobel Prize with Hund. In recognition of the importance of Hund's contributions, molecular orbital theory is often referred to as the Hund–Mulliken MO theory. Hund's rule of maximum multiplicity is another eponym and, in 1926, Hund discovered the so-called tunnel effect or quantum tunnelling.[2]

The Hund's cases, which are particular regimes in diatomic molecular angular momentum coupling, and Hund's rules, which govern atomic electron configurations, are important in spectroscopy and quantum chemistry. In chemistry, the first rule, Hund's rule of maximum multiplicity, is especially important and is often referred to as simply Hund's Rule.

Personal life

Hund married mathematician Ingeborg Seynsche (1905–1994) in Barmen on 17 March 1931. The family had six children: chess player and mathematician Gerhard Hund (1932–2024), Dietrich (1933–1939), Irmgard (b. 1934), Martin (1937–2018), Andreas (b. 1940) and Erwin (1941–2022). The chess woman grandmaster Barbara Hund (b. 1959) and chess player Isabel Hund (b. 1962) are his granddaughters.

Hund is buried in Munich Waldfriedhof.

Honours

Hund was a member of the International Academy of Quantum Molecular Science. He was awarded the Max Planck Medal in 1943.

Legacy

On the occasion of his 100th birthday, the book: Friedrich Hund: Geschichte der physikalischen Begriffe [History of Physical Concepts] (Heidelberg, Berlin, Oxford), Spektrum, Akademie Verlag 1996, ISBN 3-8274-0083-X was published. A review was also written by Werner Kutzelnigg.[3] Friedrich Hund's work and interest in the history of science was also discussed intensely in an interview conducted by Klaus Hentschel and Renate Tobies.[4]

Hund-Pfirsch family grave in Munich Waldfriedhof, where also Friedrich Hund is buried

In addition to the many honors bestowed upon him, Friedrich Hund became an honorary citizen of Jena/Saale, and a street in Jena was named after him. In June 2004, a part of a new building of the Physics Department in Göttingen was given the address Friedrich-Hund-Platz 1. The same name was chosen for the Institute for Theoretical Physics at the University of Göttingen.

Publications

  • Versuch einer Deutung der großen Durchlässigkeit einiger Edelgase für sehr langsame Elektronen, Dissertation, Universität Göttingen 1923
  • Linienspektren und periodisches System der Elemente, Habil.Schrift, Universität Göttingen, Springer 1927[5][6]
  • Allgemeine Quantenmechanik des Atom- und Molekelbaues, in Handbuch der Physik, Band 24/1, 2nd edn., pp. 561–694 (1933)
  • Materie als Feld, Berlin, Springer 1954
  • Einführung in die Theoretische Physik, 5 vols. 1944-51, Meyers Kleine Handbücher, Leipzig, Bibliographisches Institut, 1945, 1950/51 (vol. 1: Mechanik, vol. 2: Theorie der Elektrizität und des Magnetismus, vol. 3: Optik, vol. 4: Theorie der Wärme, vol. 5: Atom- und Quantentheorie)
  • Theoretische Physik, 3 vols., Stuttgart Teubner, zuerst 1956-57, vol. 1: Mechanik, 5th edn. 1962, vol. 2: Theorie der Elektrizität und des Lichts, Relativitätstheorie, 4th edn. 1963, vol. 3: Wärmelehre und Quantentheorie, 3rd edn. 1966
  • Theorie des Aufbaues der Materie, Stuttgart, Teubner 1961
  • Grundbegriffe der Physik, Mannheim, Bibliographisches Institut 1969, 2nd edn. 1979
  • Geschichte der Quantentheorie, 1967, 2nd edn., Mannheim, Bibliographisches Institut 1975, 3rd edn. 1984; Eng. trans. 1974[7]
  • Quantenmechanik der Atome, in Handbuch der Physik/Encyclopedia of Physics, Band XXXVI, Berlin, Springer 1956
  • Die Geschichte der Göttinger Physik, Vandenhoeck und Ruprecht 1987 (Göttinger Universitätsreden)
  • Geschichte der physikalischen Begriffe, 1968, 2nd edn. (2 vols.), Mannheim, Bibliographisches Institut 1978 (vol. 1: Die Entstehung des mechanischen Naturbildes, vol. 2: Die Wege zum heutigen Naturbild), Spektrum Verlag 1996
  • Göttingen, Kopenhagen, Leipzig im Rückblick, in Fritz Bopp (ed.) Werner Heisenberg und die Physik unserer Zeit, Braunschweig 1961
  • See also Verzeichnis der Schriften Friedrich Hund (1896-1997) with about 300 entries

See also

References

  1. ^ Rechenberg, Helmut (October 1997). "Obituary: Friedrich Hund". Physics Today. 50 (10): 126–127. Bibcode:1997PhT....50j.126R. doi:10.1063/1.881943.
  2. ^ Merzbacher, Eugen (August 2002). "The Early History of Quantum Tunneling". Physics Today. 55 (8): 44–49. Bibcode:2002PhT....55h..44M. doi:10.1063/1.1510281. Retrieved 17 August 2022. Friedrich Hund ... was the first to make use of quantum mechanical barrier penetration ...
  3. ^ Kutzelnigg, Werner (1996). "Friedrich Hund and Chemistry". Angewandte Chemie. 35 (6): 573–586. doi:10.1002/anie.199605721.
  4. ^ Interview mit Friedrich Hund zum 100. Geburtstag. In: NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 1996, S. 1–18, doi:10.1007/BF02913775.
  5. ^ Uhler, H. S. (1928). "Review: Linienspektren und periodisches System der Elemente, by Friedrich Hund". Bull. Amer. Math. Soc. 34 (5): 673. doi:10.1090/s0002-9904-1928-04671-2.
  6. ^ Hoyt, F. C. (1927). "Review: Linienspektren und periodisches System der Elemente, by Friedrich Hund". Astrophysical Journal. 65: 321–322. Bibcode:1927ApJ....65..321.. doi:10.1086/143057.
  7. ^ Ellison, Frank O. (1975). "Review: The History of Quantum Theory, by Friedrich Hund, trans. by Gordon Reece". J. Chem. Educ. 52 (12): A560. Bibcode:1975JChEd..52..560E. doi:10.1021/ed052pA560.1.

Read other articles:

Marina ShiraishiShiraishi Marina di Tokyo Game Show 2014Nama asal白石 茉莉奈Lahir10 Agustus 1986KebangsaanJepang Marina Shiraishi (Jepang: 白石 茉莉奈code: ja is deprecated ) (lahir 10 Agustus 1986) adalah seorang pemeran, penyanyi, idola Jepang dalam bidang video dewasa. Shiraishi adalah anggota Ebisu Muscats[2] dan Sexy-J.[3] Filmografi Film non-dewasa God Tongue 2 (2014) Yoso de iwantoite (2014–sekarang) Permainan Yakuza 0 (2015)[4] Referensi ^ Mari...

 

Philippine television show Daig Kayo ng Lola KoTitle card since 2022Also known asMy Fairy GrandmotherGenre Drama Fantasy Directed byRico GutierrezStarringGloria RomeroOpening theme Daig Kayo ng Lola Ko by Jillian Ward (2017–22) Ikot ng Mundo by Zephanie Dimaranan (since 2022)[1] Country of originPhilippinesOriginal languageTagalogNo. of episodes321 (as of December 2, 2023)ProductionExecutive producers Dhory Maiquez Reylie Manalo Camera setupMultiple-camera setupRunning time30-45 min...

 

Marguerite dari ProvencePermaisuri PrancisPeriode27 Mei 1234 – 25 Agustus 1270Penobatan28 Mei 1234Informasi pribadiWangsaWangsa BarcelonaAyahRamón Berenguer IV dari ProvenceIbuBeatrice dari Savoia (1206-1266)PasanganLouis IX dari PrancisAnakIsabellePhilippe IIIBlancheMargueriteRobert dari ClermontAgnès Marguerite dari Provence atau Margaret dari Provence (Forcalquier, musim semi tahun 1221[1] – 21 Desember 1295, Paris) merupakan seorang Ratu Prancis sebagai istri Raja Louis IX d...

1959 compilation album by Elvis PresleyFor LP Fans OnlyCompilation album by Elvis PresleyReleasedFebruary 6, 1959RecordedJuly 1954 – October 1956StudioRadio Recorders (Hollywood)RCA (Nashville)RCA (New York City)Sun (Memphis)GenreRock and roll[1]Length23:28LabelRCA VictorProducerSam Phillips (Sun recordings)Steve Sholes (RCA recordings)Elvis Presley chronology King Creole(1958) For LP Fans Only(1959) A Date with Elvis(1959) Singles from For LP Fans Only That's All RightRelea...

 

Hl. Chrysogonus von Aquileia (Michele Giambono, San Trovaso, Venedig) Chrysogonus von Aquileia (italienisch Crisogono, kroatisch Sveti Krševan, serbisch-kyrillisch Хрисогон Никејски; † um 303 in Aquileia) gilt als ein frühchristlicher Märtyrer. Er wird in der römisch-katholischen und der griechisch-orthodoxen Kirche als Heiliger verehrt und im Kanon des ersten Hochgebets und im Hochgebet des ambrosianischen Ritus genannt. Inhaltsverzeichnis 1 Leben 2 Verehrung 3 Darstell...

 

Mid-9th century Chinese military campaigns Nanzhao Kingdom Tang–Nanzhao conflicts in Annan was a period of intense chaos and warfare in Annan (present-day northern Vietnam) between local rebel forces, Nanzhao, and the Tang dynasty that lasted from 854 to 866. It ended in the defeat of Nanzhao and the retaking of Annan by the Tang general, Gao Pian, although the region would later become semi-independent from the Tang dynasty in 880. Prelude (854–857) Nanzhao was a powerful kingdom to the ...

9°31′N 30°25′E / 9.517°N 30.417°E / 9.517; 30.417   هذه المقالة عن بحر الغزال. لمعانٍ أخرى، طالع بحر الغزال (توضيح). بحر الغزال   المنطقة البلد جنوب السودان  الخصائص الطول 716 كم التصريف 1,700 قدم³/ثانية المجرى المنبع الرئيسي المستنقعات  الارتفاع ما يقارب 428 مترا عن سطح ا...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Support our troops – news · newspapers · books · scholar · JSTOR (November 2009) (Learn how and when to remove this template message) Awareness ribbons Red, white, and blue ribbon Red, white, and blue: U.S. patriotism Red ribbon (troops) Red: Armed forces suppo...

 

American journalist For persons with similar names, see Joe Klein (disambiguation). Joe KleinKlein at the 2011 Time 100 GalaBorn (1946-09-07) September 7, 1946 (age 77)New York City, New York, U.S.OccupationColumnistauthorEducationHackley SchoolUniversity of PennsylvaniaPeriod1969–presentSubjectAmerican politicsSpouse Janet Eklund ​(m. 1967⁠–⁠1975)​Victoria KaunitzChildren4 Joe Klein (born September 7, 1946) is an American political comm...

Town in South AustraliaJamestownSouth AustraliaMain streetJamestownCoordinates33°12′19″S 138°36′7″E / 33.20528°S 138.60194°E / -33.20528; 138.60194Population1,389 (UCL 2021)[1]Established1871Postcode(s)5491Location 207 km (129 mi) N of Adelaide 66 km (41 mi) E of Port Pirie 43 km (27 mi) SW of Peterborough LGA(s)Northern Areas CouncilState electorate(s)StuartFederal division(s)Grey Localities around Jamestown: Hornsdale...

 

Timeline of world records Paavo Nurmi breaks the 1,500 m world record in Helsinki in 1924. The 1500-metre run became a standard racing distance in Europe in the late 19th century, perhaps as a metric version of the mile, a popular running distance since at least the 1850s in English-speaking countries.[1] A distance of 1500 m sometimes is called the metric mile. The French had the first important races over the distance, holding their initial championship in 1888. When the Olympic Gam...

 

Historic housing development in Pennsylvania, United States United States historic placeCarver CourtU.S. National Register of Historic Places Show map of PennsylvaniaShow map of the United StatesLocationFoundry Street and Brooks Lane, near Coatesville, Caln Township, PennsylvaniaCoordinates39°59′27″N 75°48′06″W / 39.99083°N 75.80167°W / 39.99083; -75.80167Area66 acres (27 ha)Built1944ArchitectLouis Kahn Oscar StonorovGeorge HoweArchitectural style...

Alaskan Athabaskan peoples Not to be confused with Tanaina Athabaskans. Tanana Athabaskans Tanana River and Lower Tanana Athabaskan fish camp in the Chena, Alaska, June 1997.Total population 900[1] Lower & Middle Tanana: 400 Tanacross: 200 Upper Tanana: 300 Regions with significant populationsUnited States (Alaska) (majority);Canada (Yukon) (minority)LanguagesUpper Tanana, Lower Tanana, Tanacross, American English (Alaskan variant),ReligionShamanism (largely ex), Christianity...

 

Hang Seng Bank Limited恒生銀行有限公司Berkas:HSB.svgJenisPublik (SEHK: 0011, OTCBB: HSNGY)IndustriKeuangan dan AsuransiDidirikan1933KantorpusatHang Seng Bank New Headquarters Building, 83 Des Voeux Road Central, Central, Hong KongTokohkunciRaymond Ch'ien Kuo Fung (Ketua)Margaret Leung Ko May Yee (Wakil ketua dan CEO)ProdukJasa keuanganKaryawan9,700IndukHSBC GroupSitus webwww.hangseng.com Kantor pusat Hang Seng Bank, terletak di Central, Hong Kong. Jembatan yang menghubungkan ke Kantor...

 

För andra betydelser, se 1999 (olika betydelser). 1999 – MCMXCIX24 år sedan År1996 | 1997 | 199819992000 | 2001 | 2002 Årtionde1970-talet  | 1980-talet 1990-talet2000-talet | 2010-talet Århundrade1800-talet 1900-talet2000-talet Årtusende1000-talet Året Födda | AvlidnaBildanden | Upplösningar Humaniora och kultur Datorspel | Film | Konst | Litteratur | Musik | Radio | Serier | Teater | TV Samhällsvetenskapoch samhälle...

2007 ← 2008 → 2009素因数分解 23×251二進法 11111011000三進法 2202101四進法 133120五進法 31013六進法 13144七進法 5566八進法 3730十二進法 11B4十六進法 7D8二十進法 508二十四進法 3BG三十六進法 1JSローマ数字 MMVIII漢数字 二千八大字 弐千八算木 2008(二千八、にせんはち)は、自然数また整数において、2007の次で2009の前の数である。 性質 2008 は合成数であり、約数は 1, 2, 4, 8, 25...

 

High school in Daegu, South Korea Dukwon High School 덕원고등학교 德元高等學校Address37, Uksu-gilSuseong-gu, DaeguSouth KoreaCoordinates35°49′30″N 128°42′23″E / 35.8250°N 128.7064°E / 35.8250; 128.7064InformationTypePrivate schoolMottoAim high and nourish force 큰 뜻을 품고 힘을 기르자Established1978PrincipalKyung-hak Seo (서경학)Facultyapprox. 85Grades10-12GenderCo-educationalNumber of studentsapprox. 1,150Average class sizeapprox....

 

Узгодження множин точок є процесом узгодження двох множин точок. На малюнку, блакитна риба узгоджується з червоною. Узгодження множин точок (англ. point set registration, англ. point matching) у теорії розпізнавання образів та комп'ютерному зорі є процесом знаходження просторового перетв...

In geometry, tetrahedron packing is the problem of arranging identical regular tetrahedra throughout three-dimensional space so as to fill the maximum possible fraction of space. The currently densest known packing structure for regular tetrahedra is a double lattice of triangular bipyramids and fills 85.63% of space Currently, the best lower bound achieved on the optimal packing fraction of regular tetrahedra is 85.63%.[1] Tetrahedra do not tile space,[2] and an upper bound b...

 

1943 film by Frank McDonald Alaska HighwayDirected byFrank McDonaldCharles Kerr (assistant)Written byLewis R. FosterMaxwell ShaneProduced byWilliam H. PineWilliam C. ThomasStarringRichard ArlenJean ParkerRalph SanfordCinematographyFred Jackman Jr.Edited byWilliam H. ZieglerMusic byFreddie RichProductioncompanyPine-Thomas ProductionsDistributed byParamount PicturesRelease date 1943 (1943) Running time66 minutesCountryUnited StatesLanguageEnglish Alaska Highway is a 1943 American drama fil...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!