Share to: share facebook share twitter share wa share telegram print page

For loop

Flow diagram of the following for loop code:
for (i = 0; i < 5; i++)
  printf("*");
The loop will cause five asterisks to be printed.

In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied.

For-loops have two parts: a header and a body. The header defines the iteration and the body is the code that is executed once per iteration. The header often declares an explicit loop counter or loop variable. This allows the body to know which iteration is being executed. For-loops are typically used when the number of iterations is known before entering the loop. For-loops can be thought of as shorthands for while-loops which increment and test a loop variable.

Various keywords are used to indicate the usage of a for loop: descendants of ALGOL use "for", while descendants of Fortran use "do". There are other possibilities, for example COBOL which uses PERFORM VARYING.

The name for-loop comes from the word for. For is used as the reserved word (or keyword) in many programming languages to introduce a for-loop. The term in English dates to ALGOL 58 and was popularized in ALGOL 60. It is the direct translation of the earlier German für and was used in Superplan (1949–1951) by Heinz Rutishauser. Rutishauser was involved in defining ALGOL 58 and ALGOL 60.[1] The loop body is executed "for" the given values of the loop variable. This is more explicit in ALGOL versions of the for statement where a list of possible values and increments can be specified.

In Fortran and PL/I, the keyword DO is used for the same thing and it is named a do-loop; this is different from a do while loop.

FOR

For loop illustration, from i=0 to i=2, resulting in data1=200

A for-loop statement is available in most imperative programming languages. Even ignoring minor differences in syntax, there are many differences in how these statements work and the level of expressiveness they support. Generally, for-loops fall into one of four categories:

Traditional for-loops

The for-loop of languages like ALGOL, Simula, BASIC, Pascal, Modula, Oberon, Ada, MATLAB, OCaml, F#, and so on, requires a control variable with start- and end-values, which looks something like this:

for i = first to last do statement
(* or just *)
for i = first..last do statement

Depending on the language, an explicit assignment sign may be used in place of the equal sign (and some languages require the word int even in the numerical case). An optional step-value (an increment or decrement ≠ 1) may also be included, although the exact syntaxes used for this differs a bit more between the languages. Some languages require a separate declaration of the control variable, some do not.

Another form was popularized by the C language. It requires 3 parts: the initialization (loop variant), the condition, and the advancement to the next iteration. All these three parts are optional.[2] This type of "semicolon loops" came from B programming language and it was originally invented by Stephen Johnson.[3]

In the initialization part, any variables needed are declared (and usually assigned values). If multiple variables are declared, they should all be of the same type. The condition part checks a certain condition and exits the loop if false, even if the loop is never executed. If the condition is true, then the lines of code inside the loop are executed. The advancement to the next iteration part is performed exactly once every time the loop ends. The loop is then repeated if the condition evaluates to true.

Here is an example of the C-style traditional for-loop in Java.

// Prints the numbers from 0 to 99 (and not 100), each followed by a space.

for (int i=0; i<100; i++)
{
    System.out.print(i);
    System.out.print(' ');
}
System.out.println();

These loops are also sometimes named numeric for-loops when contrasted with foreach loops (see below).

Iterator-based for-loops

This type of for-loop is a generalisation of the numeric range type of for-loop, as it allows for the enumeration of sets of items other than number sequences. It is usually characterized by the use of an implicit or explicit iterator, in which the loop variable takes on each of the values in a sequence or other data collection. A representative example in Python is:

for item in some_iterable_object:
    do_something()
    do_something_else()

Where some_iterable_object is either a data collection that supports implicit iteration (like a list of employee's names), or may in fact be an iterator itself. Some languages have this in addition to another for-loop syntax; notably, PHP has this type of loop under the name for each, as well as a three-expression for-loop (see below) under the name for.

Vectorised for-loops

Some languages offer a for-loop that acts as if processing all iterations in parallel, such as the for all keyword in Fortran 95 which has the interpretation that all right-hand-side expressions are evaluated before any assignments are made, as distinct from the explicit iteration form. For example, in the for statement in the following pseudocode fragment, when calculating the new value for A(i), except for the first (with i = 2) the reference to A(i - 1) will obtain the new value that had been placed there in the previous step. In the for all version, however, each calculation refers only to the original, unaltered A.

for     i := 2 : N - 1 do A(i) := [A(i - 1) + A(i) + A(i + 1)] / 3; next i;
for all i := 2 : N - 1 do A(i) := [A(i - 1) + A(i) + A(i + 1)] / 3;

The difference may be significant.

Some languages (such as PL/I, Fortran 95) also offer array assignment statements, that enable many for-loops to be omitted. Thus pseudocode such as A := 0; would set all elements of array A to zero, no matter its size or dimensionality. The example loop could be rendered as

 A(2 : N - 1) := [A(1 : N - 2) + A(2 : N - 1) + A(3 : N)] / 3;

But whether that would be rendered in the style of the for-loop or the for all-loop or something else may not be clearly described in the compiler manual.

Compound for-loops

Introduced with ALGOL 68 and followed by PL/I, this allows the iteration of a loop to be compounded with a test, as in

for i := 1 : N while A(i) > 0 do etc.

That is, a value is assigned to the loop variable i and only if the while expression is true will the loop body be executed. If the result were false the for-loop's execution stops short. Granted that the loop variable's value is defined after the termination of the loop, then the above statement will find the first non-positive element in array A (and if no such, its value will be N + 1), or, with suitable variations, the first non-blank character in a string, and so on.

Loop counters

In computer programming, a loop counter is a control variable that controls the iterations of a loop (a computer programming language construct). It is so named because most uses of this construct result in the variable taking on a range of integer values in some orderly sequences (example., starting at 0 and end at 10 in increments of 1)

Loop counters change with each iteration of a loop, providing a unique value for each individual iteration. The loop counter is used to decide when the loop should terminate and for the program flow to continue to the next instruction after the loop.

A common identifier naming convention is for the loop counter to use the variable names i, j, and k (and so on if needed), where i would be the most outer loop, j the next inner loop, etc. The reverse order is also used by some programmers. This style is generally agreed to have originated from the early programming of Fortran[citation needed], where these variable names beginning with these letters were implicitly declared as having an integer type, and so were obvious choices for loop counters that were only temporarily required. The practice dates back further to mathematical notation where indices for sums and multiplications are often i, j, etc. A variant convention is the use of duplicated letters for the index, ii, jj, and kk, as this allows easier searching and search-replacing than using a single letter.[4]

Example

An example of C code involving nested for loops, where the loop counter variables are i and j:

for (i = 0; i < 100; i++) {
    for (j = i; j < 10; j++) {
        some_function(i, j);
    }
}

For loops in C can also be used to print the reverse of a word. As:

for (i = 0; i < 6; i++) {
    scanf("%c", &a[i]);
}
for (i = 4; i >= 0; i--) {
    printf("%c", a[i]);
}

Here, if the input is apple, the output will be elppa.

Additional semantics and constructs

Use as infinite loops

This C-style for-loop is commonly the source of an infinite loop since the fundamental steps of iteration are completely in the control of the programmer. In fact, when infinite loops are intended, this type of for-loop can be used (with empty expressions), such as:

for (;;)
    //loop body

This style is used instead of infinite while (1) loops to avoid a type conversion warning in some C/C++ compilers.[5] Some programmers prefer the more succinct for (;;) form over the semantically equivalent but more verbose while (true) form.

Early exit and continuation

Some languages may also provide other supporting statements, which when present can alter how the for-loop iteration proceeds. Common among these are the break and continue statements found in C and its derivatives. The break statement causes the inner-most loop to be terminated immediately when executed. The continue statement will move at once to the next iteration without further progress through the loop body for the current iteration. A for statement also terminates when a break, goto, or return statement within the statement body is executed.[Wells] Other languages may have similar statements or otherwise provide means to alter the for-loop progress; for example in Fortran 95:

DO I = 1, N
  statements               !Executed for all values of "I", up to a disaster if any.
  IF (no good) CYCLE       !Skip this value of "I", continue with the next.
  statements               !Executed only where goodness prevails.
  IF (disaster) EXIT       !Abandon the loop.
  statements               !While good and, no disaster.
END DO                     !Should align with the "DO".

Some languages offer further facilities such as naming the various loop statements so that with multiple nested loops there is no doubt as to which loop is involved. Fortran 95, for example:

X1:DO I = 1,N
     statements
  X2:DO J = 1,M
       statements
       IF (trouble) CYCLE X1
       statements
     END DO X2
     statements
   END DO X1

Thus, when "trouble" is detected in the inner loop, the CYCLE X1 (not X2) means that the skip will be to the next iteration for I, not J. The compiler will also be checking that each END DO has the appropriate label for its position: this is not just a documentation aid. The programmer must still code the problem correctly, but some possible blunders will be blocked.

Loop variable scope and semantics

Different languages specify different rules for what value the loop variable will hold on termination of its loop, and indeed some hold that it "becomes undefined". This permits a compiler to generate code that leaves any value in the loop variable, or perhaps even leaves it unchanged because the loop value was held in a register and never stored to memory. Actual behaviour may even vary according to the compiler's optimization settings, as with the Honywell Fortran66 compiler.

In some languages (not C or C++) the loop variable is immutable within the scope of the loop body, with any attempt to modify its value being regarded as a semantic error. Such modifications are sometimes a consequence of a programmer error, which can be very difficult to identify once made. However, only overt changes are likely to be detected by the compiler. Situations where the address of the loop variable is passed as an argument to a subroutine make it very difficult to check, because the routine's behavior is in general unknowable to the compiler. Some examples in the style of Fortran:

DO I = 1, N
  I = 7                           !Overt adjustment of the loop variable. Compiler complaint likely.
  Z = ADJUST(I)                   !Function "ADJUST" might alter "I", to uncertain effect.
  normal statements               !Memory might fade that "I" is the loop variable.
  PRINT (A(I), B(I), I = 1, N, 2) !Implicit for-loop to print odd elements of arrays A and B, reusing "I"...
  PRINT I                         !What value will be presented?
END DO                            !How many times will the loop be executed?

A common approach is to calculate the iteration count at the start of a loop (with careful attention to overflow as in for i := 0 : 65535 do ... ; in sixteen-bit integer arithmetic) and with each iteration decrement this count while also adjusting the value of I: double counting results. However, adjustments to the value of I within the loop will not change the number of iterations executed.

Still another possibility is that the code generated may employ an auxiliary variable as the loop variable, possibly held in a machine register, whose value may or may not be copied to I on each iteration. Again, modifications of I would not affect the control of the loop, but now a disjunction is possible: within the loop, references to the value of I might be to the (possibly altered) current value of I or to the auxiliary variable (held safe from improper modification) and confusing results are guaranteed. For instance, within the loop a reference to element I of an array would likely employ the auxiliary variable (especially if it were held in a machine register), but if I is a parameter to some routine (for instance, a print-statement to reveal its value), it would likely be a reference to the proper variable I instead. It is best to avoid such possibilities.

Adjustment of bounds

Just as the index variable might be modified within a for-loop, so also may its bounds and direction. But to uncertain effect. A compiler may prevent such attempts, they may have no effect, or they might even work properly - though many would declare that to do so would be wrong. Consider a statement such as

for i := first : last : step do
  A(i) := A(i) / A(last);

If the approach to compiling such a loop was to be the evaluation of first, last and step and the calculation of an iteration count via something like (last - first)/step once only at the start, then if those items were simple variables and their values were somehow adjusted during the iterations, this would have no effect on the iteration count even if the element selected for division by A(last) changed.

List of value ranges

PL/I and ALGOL 68, allows loops in which the loop variable is iterated over a list of ranges of values instead of a single range. The following PL/I example will execute the loop with six values of i: 1, 7, 12, 13, 14, 15:

do i = 1, 7, 12 to 15;
  /*statements*/
end;

Equivalence with while-loops

A for-loop is generally equivalent to a while-loop:

factorial := 1
 for counter from 2 to 5
     factorial := factorial * counter
counter := counter - 1
print counter + "! equals " + factorial

is equivalent to:

factorial := 1
counter := 1
 while counter < 5
    counter := counter + 1
    factorial := factorial * counter
print counter + "! equals " + factorial

as demonstrated by the output of the variables.

Timeline of the for-loop syntax in various programming languages

Given an action that must be repeated, for instance, five times, different languages' for-loops will be written differently. The syntax for a three-expression for-loop is nearly identical in all languages that have it, after accounting for different styles of block termination and so on.

1957: FORTRAN

Fortran's equivalent of the for loop is the DO loop, using the keyword do instead of for, The syntax of Fortran's DO loop is:

        DO label counter = first, last, step
          statements
label     statement

The following two examples behave equivalently to the three argument for-loop in other languages, initializing the counter variable to 1, incrementing by 1 each iteration of the loop and stopping at five (inclusive).

        DO 9, COUNTER = 1, 5, 1
          WRITE (6,8) COUNTER
    8     FORMAT( I2 )
    9   CONTINUE

In Fortran 77 (or later), this may also be written as:

do counter = 1, 5
  write(*, '(i2)') counter
end do

The step part may be omitted if the step is one. Example:

* DO loop example.
       PROGRAM MAIN
         SUM SQ = 0
         DO 199 I = 1, 9999999
           IF (SUM SQ.GT.1000) GO TO 200
199        SUM SQ = SUM SQ + I**2
200      PRINT 206, SUMSQ
206      FORMAT( I2 )
       END

Spaces are irrelevant in fixed-form Fortran statements, thus SUM SQ is the same as SUMSQ. In the modern free-form Fortran style, blanks are significant.

In Fortran 90, the GO TO may be avoided by using an EXIT statement.

* DO loop example.
       program main
         implicit none

         integer :: sumsq
         integer :: i

         sumsq = 0
         do i = 1, 9999999
           if (sumsq > 1000.0) exit
           sumsq = sumsq + i**2
          end do
         print *, sumsq

       end program

1958: ALGOL

ALGOL 58 introduced the for statement, using the form as Superplan:

 FOR Identifier = Base (Difference) Limit

For example to print 0 to 10 incremented by 1:

FOR x = 0 (1) 10 BEGIN
PRINT (FL) = x END

1960: COBOL

COBOL was formalized in late 1959 and has had many elaborations. It uses the PERFORM verb which has many options. Originally all loops had to be out-of-line with the iterated code occupying a separate paragraph. Ignoring the need for declaring and initialising variables, the COBOL equivalent of a for-loop would be.

      PERFORM SQ-ROUTINE VARYING I FROM 1 BY 1 UNTIL I > 1000

      SQ-ROUTINE
             ADD I**2 TO SUM-SQ.

In the 1980s, the addition of in-line loops and structured programming statements such as END-PERFORM resulted in a for-loop with a more familiar structure.

      PERFORM VARYING I FROM 1 BY 1 UNTIL I > 1000
             ADD I**2 TO SUM-SQ.
      END-PERFORM

If the PERFORM verb has the optional clause TEST AFTER, the resulting loop is slightly different: the loop body is executed at least once, before any test.

1964: BASIC

In BASIC, a loop is sometimes named a for-next loop.

10 REM THIS FOR LOOP PRINTS ODD NUMBERS FROM 1 TO 15
20 FOR I = 1 TO 15 STEP 2
30 PRINT I
40 NEXT I

The end-loop marker specifies the name of the index variable, which must correspond to the name of the index variable in the start of the for-loop. Some languages (PL/I, Fortran 95 and later) allow a statement label on the start of a for-loop that can be matched by the compiler against the same text on the corresponding end-loop statement. Fortran also allows the EXIT and CYCLE statements to name this text; in a nest of loops this makes clear which loop is intended. However, in these languages the labels must be unique, so successive loops involving the same index variable cannot use the same text nor can a label be the same as the name of a variable, such as the index variable for the loop.

1964: PL/I

do counter = 1 to 5 by 1; /* "by 1" is the default if not specified */
  /*statements*/;
  end;

The LEAVE statement may be used to exit the loop. Loops can be labeled, and leave may leave a specific labeled loop in a group of nested loops. Some PL/I dialects include the ITERATE statement to terminate the current loop iteration and begin the next.

1968: ALGOL 68

ALGOL 68 has what was considered the universal loop, the full syntax is:

FOR i FROM 1 BY 2 TO 3 WHILE i≠4 DO ~ OD

Further, the single iteration range could be replaced by a list of such ranges. There are several unusual aspects of the construct

  • only the do ~ od portion was compulsory, in which case the loop will iterate indefinitely.
  • thus the clause to 100 do ~ od, will iterate exactly 100 times.
  • the while syntactic element allowed a programmer to break from a for loop early, as in:
INT sum sq := 0;
FOR i
 WHILE
  print(("So far:", i, new line)); # Interposed for tracing purposes. #
  sum sq ≠ 70↑2                    # This is the test for the WHILE   #
DO
  sum sq +:= i↑2
OD

Subsequent extensions to the standard ALGOL 68 allowed the to syntactic element to be replaced with upto and downto to achieve a small optimization. The same compilers also incorporated:

until
for late loop termination.
foreach
for working on arrays in parallel.

1970: Pascal

for Counter := 1 to 5 do
  (*statement*);

Decrementing (counting backwards) is using downto keyword instead of to, as in:

for Counter := 5 downto 1 do
  (*statement*);

The numeric-range for-loop varies somewhat more.

1972: C, C++

for (initialization; condition; increment/decrement)
    statement

The statement is often a block statement; an example of this would be:

//Using for-loops to add numbers 1 - 5
int sum = 0;
for (int i = 1; i <= 5; ++i) {
    sum += i;
}

The ISO/IEC 9899:1999 publication (commonly known as C99) also allows initial declarations in for loops. All the three sections in the for loop are optional, with an empty condition equivalent to true.

1972: Smalltalk

1 to: 5 do: [ :counter | "statements" ]

Contrary to other languages, in Smalltalk a for-loop is not a language construct but defined in the class Number as a method with two parameters, the end value and a closure, using self as start value.

1980: Ada

for Counter in 1 .. 5 loop
   -- statements
end loop;

The exit statement may be used to exit the loop. Loops can be labeled, and exit may leave a specifically labeled loop in a group of nested loops:

Counting:
    for Counter in 1 .. 5 loop
   Triangle:
       for Secondary_Index in 2 .. Counter loop
          -- statements
          exit Counting;
          -- statements
       end loop Triangle;
    end loop Counting;

1980: Maple

Maple has two forms of for-loop, one for iterating of a range of values, and the other for iterating over the contents of a container. The value range form is as follows:

for i from f by b to t while w do
    # loop body
od;

All parts except do and od are optional. The for i part, if present, must come first. The remaining parts (from f, by b, to t, while w) can appear in any order.

Iterating over a container is done using this form of loop:

for e in c while w do
    # loop body
od;

The in c clause specifies the container, which may be a list, set, sum, product, unevaluated function, array, or an object implementing an iterator.

A for-loop may be terminated by od, end, or end do.

1982: Maxima CAS

In Maxima CAS, one can use also non integer values:

for x:0.5 step 0.1 thru 0.9 do
    /* "Do something with x" */

1982: PostScript

The for-loop, written as [initial] [increment] [limit] { ... } for initialises an internal variable, executes the body as long as the internal variable is not more than limit (or not less, if increment is negative) and, at the end of each iteration, increments the internal variable. Before each iteration, the value of the internal variable is pushed onto the stack.[6]

1 1 6 {STATEMENTS} for

There is also a simple repeat-loop. The repeat-loop, written as X { ... } repeat, repeats the body exactly X times.[7]

5 { STATEMENTS } repeat

1983: Ada 83 and above

procedure Main is
  Sum_Sq : Integer := 0;
begin
  for I in 1 .. 9999999 loop
    if Sum_Sq <= 1000 then
      Sum_Sq := Sum_Sq + I**2
    end if;
  end loop;
end;

1984: MATLAB

for n = 1:5
     -- statements
end

After the loop, n would be 5 in this example.

As i is used for the Imaginary unit, its use as a loop variable is discouraged.

1987: Perl

for ($counter = 1; $counter <= 5; $counter++) { # implicitly or predefined variable
    # statements;
}
for (my $counter = 1; $counter <= 5; $counter++) { # variable private to the loop
    # statements;
}
for (1..5) { # variable implicitly called $_; 1..5 creates a list of these 5 elements
    # statements;
}
statement for 1..5; # almost same (only 1 statement) with natural language order
for my $counter (1..5) { # variable private to the loop
    # statements;
}

"There's more than one way to do it" is a Perl programming motto.

1988: Mathematica

The construct corresponding to most other languages' for-loop is named Do in Mathematica.

Do[f[x], {x, 0, 1, 0.1}]

Mathematica also has a For construct that mimics the for-loop of C-like languages

For[x= 0 , x <= 1, x += 0.1,
    f[x]
]

1989: Bash

# first form
for i in 1 2 3 4 5
do
    # must have at least one command in loop
    echo $i  # just print value of i
done
# second form
for (( i = 1; i <= 5; i++ ))
do
    # must have at least one command in loop
    echo $i  # just print value of i
done

An empty loop (i.e., one with no commands between do and done) is a syntax error. If the above loops contained only comments, execution would result in the message "syntax error near unexpected token 'done'".

1990: Haskell

The built-in imperative forM_ maps a monadic expression into a list, as

forM_ [1..5] $ \indx -> do statements

or get each iteration result as a list in

statements_result_list <- forM [1..5] $ \indx -> do statements

But, to save the space of the [1..5] list, a more authentic monadic forLoop_ construction can be defined as

import Control.Monad as M

forLoopM_ :: Monad m => a -> (a -> Bool) -> (a -> a) -> (a -> m ()) -> m ()
forLoopM_ indx prop incr f = do
        f indx
        M.when (prop next) $ forLoopM_ next prop incr f
  where
    next = incr indx

and used as:

  forLoopM_ (0::Int) (< len) (+1) $ \indx -> do -- whatever with the index

1991: Oberon-2, Oberon-07, Component Pascal

FOR Counter := 1 TO 5 DO
  (* statement sequence *)
END

In the original Oberon language the for-loop was omitted in favor of the more general Oberon loop construct. The for-loop was reintroduced in Oberon-2.

1991: Python

Python does not contain the classical for loop, rather a foreach loop is used to iterate over the output of the built-in range() function which returns an iterable sequence of integers.

for i in range(1, 6):  # gives i values from 1 to 5 inclusive (but not 6)
    # statements
    print(i)
# if we want 6 we must do the following
for i in range(1, 6 + 1):  # gives i values from 1 to 6
    # statements
    print(i)

Using range(6) would run the loop from 0 to 5.

1993: AppleScript

repeat with i from 1 to 5
	-- statements
	log i
end repeat

It can also iterate through a list of items, similar to what can be done with arrays in other languages:

set x to {1, "waffles", "bacon", 5.1, false}
repeat with i in x
	log i
end repeat

A exit repeat may also be used to exit a loop at any time. Unlike other languages, AppleScript currently has no command to continue to the next iteration of a loop.

1993: Crystal

for i = start, stop, interval do
  -- statements
end

So, this code

for i = 1, 5, 2 do
  print(i)
end

will print:

1 3 5

For-loops can also loop through a table using

ipairs()

to iterate numerically through arrays and

pairs()

to iterate randomly through dictionaries.

Generic for-loop making use of closures:

for name, phone, address in contacts() do
  -- contacts() must be an iterator function
end

1995: ColdFusion Markup Language (CFML)

Script syntax

Simple index loop:

for (i = 1; i <= 5; i++) {
	// statements
}

Using an array:

for (i in [1,2,3,4,5]) {
	// statements
}

Using a list of string values:

loop index="i" list="1;2,3;4,5" delimiters=",;" {
	// statements
}

The above list example is only available in the dialect of CFML used by Lucee and Railo.

Tag syntax

Simple index loop:

<cfloop index="i" from="1" to="5">
	<!--- statements --->
</cfloop>

Using an array:

<cfloop index="i" array="#[1,2,3,4,5]#">
	<!--- statements --->
</cfloop>

Using a "list" of string values:

<cfloop index="i" list="1;2,3;4,5" delimiters=",;">
	<!--- statements --->
</cfloop>

1995: Java

for (int i = 0; i < 5; i++) {
    //perform functions within the loop;
    //can use the statement 'break;' to exit early;
    //can use the statement 'continue;' to skip the current iteration
}

For the extended for-loop, see Foreach loop § Java.

1995: JavaScript

JavaScript supports C-style "three-expression" loops. The break and continue statements are supported inside loops.

for (var i = 0; i < 5; i++) {
    // ...
}

Alternatively, it is possible to iterate over all keys of an array.

for (var key in array) {  // also works for assoc. arrays
    // use array[key]
    ...
}

1995: PHP

This prints out a triangle of *

for ($i = 0; $i <= 5; $i++) {
    for ($j = 0; $j <= $i; $j++) {
        echo "*";
    }
    echo "<br />\n";
}

1995: Ruby

for counter in 1..5
  # statements
end

5.times do |counter|  # counter iterates from 0 to 4
  # statements
end

1.upto(5) do |counter|
  # statements
end

Ruby has several possible syntaxes, including the above samples.

1996: OCaml

See expression syntax.[8]

 (* for_statement := "for" ident '='  expr  ( "to" ∣  "downto" ) expr "do" expr "done" *)

for i = 1 to 5 do
    (* statements *)
  done ;;

for j = 5 downto 0 do
    (* statements *)
  done ;;

1998: ActionScript 3

for (var counter:uint = 1; counter <= 5; counter++){
    //statement;
}

2008: Small Basic

For i = 1 To 10
    ' Statements
EndFor

2008: Nim

Nim has a foreach-type loop and various operations for creating iterators.[9]

for i in 5 .. 10:
  # statements

2009: Go

for i := 0; i <= 10; i++ {
    // statements
}

2010: Rust

for i in 0..10 {
    // statements
}

2012: Julia

for j = 1:10
    # statements
end

See also

References

  1. ^ Wirth, Niklaus (1973). "Preface". Systematic Programming: An Introduction. pp. xiii. ISBN 0138803692.
  2. ^ "For loops in C++". Learn C++.
  3. ^ Thompson, Ken. VCF East 2019 – Brian Kernighan interviews Ken Thompson. YouTube. Archived from the original on 2021-12-12. Retrieved 2020-11-16. I saw Johnson's semicolon version of the for loop and I put that in [B], I stole it.
  4. ^ http://www.knosof.co.uk/vulnerabilities/loopcntrl.pdf Analysis of loop control variables in C
  5. ^ "Compiler Warning (level 4) C4127". Microsoft. Retrieved 29 June 2011.
  6. ^ PostScript Language Reference. Addison-Wesley Publishing Company. 1999. p. 596. ISBN 0-201-37922-8.
  7. ^ "PostScript Tutorial - Loops".
  8. ^ "OCaml expression syntax". Archived from the original on 2013-04-12. Retrieved 2013-03-19.
  9. ^ https://nim-lang.org/docs/system.html#...i%2CT%2CT ".. iterator"

Read other articles:

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Eesti Televisioon – news · newspapers · books · scholar · JSTOR (August 2022) (Learn how and when to remove this template message)Estonian national television channel For other uses, see ETV (disambiguation). Estonian Television redirects here. For the list of ...

Бенен-ле-Сент-АвольдBéning-lès-Saint-Avold   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Форбак-Буле-Мозель Кантон Фреймен-Мерлебак Код INSEE 57061 Поштові індекси 57800 Координати 49°07′58″ пн. ш. 6°50′24″ сх. д.H G O Висота 202 - 337 м.н.р.м. Площа 3,69 км² Населен...

Алоа — термін, який має кілька значень. Ця сторінка значень містить посилання на статті про кожне з них.Якщо ви потрапили сюди за внутрішнім посиланням, будь ласка, поверніться та виправте його так, щоб воно вказувало безпосередньо на потрібну статтю.@ пошук посилань саме...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2022) تيم كيستر   معلومات شخصية الميلاد 30 ديسمبر 1986 (العمر 36 سنة)فرانكفورت  الطول 1.93 م (6 قدم 4 بوصة) مركز اللعب مدافع الجنسية ألمانيا  معلومات النادي...

Shire of Kulin Local Government Area van Australië Locatie van Shire of Kulin in West-Australië Situering Staat West-Australië Hoofdplaats Kulin Coördinaten 32°40'16ZB, 118°9'11OL Algemene informatie Oppervlakte 4.713,7 km² Inwoners 769 (2021)[1] Overig Website (en) Shire of Kulin Portaal    Australië Shire of Kulin is een Local Government Area (LGA) in de regio Wheatbelt in West-Australië. Shire of Kulin telde 769 inwoners in 2021. De hoofdplaats is Kulin. Kantoren...

この記事に雑多な内容を羅列した節があります。事項を箇条書きで列挙しただけの節は、本文として組み入れるか、または整理・除去する必要があります。(2015年8月) 「代用表記」はこの項目へ転送されています。その他の用法については「代用表記 (曖昧さ回避)」をご覧ください。 この項目には、JIS X 0213:2004 で規定されている文字が含まれています(詳細)。 漢字

Putri Pariwisata Kepulauan Bangka BelitungLogo Putri Pariwisata IndonesiaPembuatJohnnie SugiartoNegara asal Kepulauan Bangka Belitung, IndonesiaRilisRilis asli2008 –SekarangPranala luarSitus web Putri Pariwisata Kepulauan Bangka Belitung merupakan kontes kecantikan berskala regional yang bertujuan memilih delegasi provinsi Kepulauan Bangka Belitung pada Putri Pariwisata Indonesia. Terhitung sejak keikutsertaan edisi 2008, Kepulauan Bangka Belitung belum pernah memenangkan Putri Pa...

Malondialdehyde Names IUPAC name propanedial Other names Malonic aldehyde; Malonodialdehyde; Propanedial; 1,3-Propanedial ; Malonaldehyde ; Malonyldialdehyde Identifiers CAS Number 542-78-9 Y 3D model (JSmol) dialdehyde: Interactive imageenol: Interactive image Abbreviations MDA ChemSpider 10499 N KEGG C19440 Y PubChem CID 10964 UNII 4Y8F71G49Q Y CompTox Dashboard (EPA) DTXSID90202556 InChI InChI=1S/C3H4O2/c4-2-1-3-5/h2-3H,1H2 NKey: WSMYVTOQOO...

Ukrainian cyclist Yevheniya VysotskaVysotska at the 2018 European Road Cycling Championships.Personal informationFull nameYevheniya VysotskaBorn (1975-12-11) 11 December 1975 (age 47)Voinka, Crimean Oblast, Soviet Union (now Ukraine)Team informationDisciplineRoadRoleRiderProfessional teams2010Team Valdarno Umbria2013–2014S.C. Michela Fanini Rox2015Servetto Footon2016Hagens Berman–Supermint2017Conceria Zabri–Fanini–Guerciotti2018S.C. Michela Fanini Rox2019Servetto–Piumate...

British colony, later called Tasmania For other uses, see Van Diemen's Land (disambiguation). Van Diemen's LandBritish Crown Colony1825–1856 Flag1828 mapAnthemGod Save the King/Queen CapitalHobartDemonymVan Diemonian (usually spelt Vandemonian)Population • 1851 70,130 HistoryGovernment • TypeSelf-governing colonyMonarch • 1825–1830 George IV• 1830–1837 William IV• 1837–1856 Victoria Lieutenant-Governor • 1825–1836 Sir Geo...

Protected area in New South Wales, AustraliaCecil Hoskins Nature ReserveNew South WalesIUCN category IV (habitat/species management area) A swamp and wetlands are located within the reserveCecil Hoskins Nature ReserveNearest town or cityBowralCoordinates34°31.942′S 150°23.887′E / 34.532367°S 150.398117°E / -34.532367; 150.398117Established7 March 1975 (1975-03-07)[1]Area0.46 km2 (0.2 sq mi)[1]Managing authoritiesNSW...

Kino in December 2017 Kang Hyung-gu (Korean: 강형구; born (1998-01-27)January 27, 1998), better known as Kino (키노) or his producer name Knnovation, is a South Korean singer, songwriter and composer. He debuted as a member of the South Korean boy group Pentagon under Cube Entertainment in October 2016. Kino helps produce much of Pentagon's output, with his most notable songs including Spring Snow, Happiness, and Violet. In addition to his work with Pentagon, Kino has a catalog of self-w...

1966 Bengali film Subhas Chandra is an Indian Bengali-language biographical film, directed by Pijush Basu[1] and produced by Ajit Kumar Banerjee[2] based on the life of Netaji Subhas Chandra Bose.[3][4] This film was released in 1966[5] and won National Award in 1967. Cast Amar Dutta as Subhash Chandra Bose Dilip Roy Samar Chatterjee Ashish Ghosh as yopung subhas Shiben Bandyopadhyay Robin Banerjee Minati Chakraborty Rishi Banerjee References ^ Subhash ...

Bonifacio High StreetBonifacio High Street before sunsetProjectOpening dateHigh Street: 2007; 16 years ago (2007)High Street Central: 2012; 11 years ago (2012)Central Square: June 2014; 9 years ago (2014-06)Ayala Malls One Bonifacio High Street: August 2018; 5 years ago (2018-08)DeveloperAyala LandOperatorAyala MallsOwnerZobel de Ayala familyWebsiteOfficial websitePhysical featuresTransport  BA02  One ...

Astrakhan single-member constituency Constituency of the Russian State DumaDeputyLeonid OgulUnited RussiaFederal subjectAstrakhan OblastDistrictsAkhtubinsky, Astrakhan, Chernoyarsky, Ikryaninsky, Kamyzyaksky, Kharabalinsky, Krasnoyarsky, Limansky, Narimanovsky, Privolzhsky, Volodarsky, Yenotayevsky, Znamensk[1]Voters197,099 (2021)[2] The Astrakhan constituency (No.74[a]) is a Russian legislative constituency, covering the entirety of Astrakhan Oblast. Members elected E...

For other people named James Cameron, see James Cameron (disambiguation). James W. Cameron (23 April 1913 – 12 January 2010)[1] was an emeritus professor of horticultural science, a geneticist and citrus breeder in the University of California Citrus Experiment Station. Breeding Oroblanco is a very popular grapefruit variety, praised for its sweetness. Was developed by James W. Cameron together with Robert K. Soost. Together with Robert Soost he developed the Oroblanco[2] an...

Suasana hari pertama sekolah tatap muka pada Januari 2021 di Padang, Sumatera Barat. Pemerintah Indonesia mengizinkan pembukaan sekolah di tengah pandemi COVID-19 untuk daerah yang memiliki risiko rendah penyebaran COVID-19. Bagian dari seri artikel mengenaiPandemi Covid-19Permodelan atomik akurat yang menggambarkan struktur luar virus SARS-CoV-2. Tiap bola yang tergambarkan di sini adalah sebuah atom. SARS-CoV-2 (virus) Covid-19 (penyakit) Kronologi2019 2020 Januari Februari Maret April Mei ...

American TV series or program AmpCreated by Todd Mueller Burle Avant Opening themeTempest by Deepsky[1]Country of originUnited StatesProductionExecutive producers Todd Mueller Gregg Drebin Christina Norman Abby Terkuhle Producers Todd Mueller V. Owen Bush Colin Barton EditorBurle AvantRunning time60 minutes (with commercials)Original releaseNetworkMTVReleaseSeptember 6, 1996 (1996-09-06) –2001 (2001) Amp is a music video program on MTV that aired from 1996 to 200...

Fictional character by Marvel Comics Comics character Awesome AndroidThe Awesome Android on the cover (background) of Rom #14 (Feb. 1981). Art by Dave Cockrum.Publication informationPublisherMarvel ComicsFirst appearanceThe Fantastic Four #15 (June 1963)Created byStan Lee (writer)Jack Kirby (artist)In-story informationSpeciesRobotTeam affiliationsA.I. ArmyGoodman, Lieber, Kurtzberg, & HolliwayHeavy MetalIntelligenciaPartnershipsMad ThinkerNotable aliasesAwesome AndyAbilities Superhuman st...

Yosua 2Kitab Yosua lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab YosuaKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen6← pasal 1 pasal 3 → Yosua 2 (disingkat Yos 2) adalah pasal kedua Kitab Yosua dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen yang memuat riwayat Yosua dalam memimpin orang Israel menduduki tanah Kanaan.[1] Pasal ini berisi riwayat pengintai-pengintai yang dikirim ke kota Yerikho dan perbuatan Rahab. ...

Kembali kehalaman sebelumnya