Flux limiter

Flux limiters are used in high resolution schemes – numerical schemes used to solve problems in science and engineering, particularly fluid dynamics, described by partial differential equations (PDEs). They are used in high resolution schemes, such as the MUSCL scheme, to avoid the spurious oscillations (wiggles) that would otherwise occur with high order spatial discretization schemes due to shocks, discontinuities or sharp changes in the solution domain. Use of flux limiters, together with an appropriate high resolution scheme, make the solutions total variation diminishing (TVD).

Note that flux limiters are also referred to as slope limiters because they both have the same mathematical form, and both have the effect of limiting the solution gradient near shocks or discontinuities. In general, the term flux limiter is used when the limiter acts on system fluxes, and slope limiter is used when the limiter acts on system states (like pressure, velocity etc.).

How they work

The main idea behind the construction of flux limiter schemes is to limit the spatial derivatives to realistic values – for scientific and engineering problems this usually means physically realisable and meaningful values. They are used in high resolution schemes for solving problems described by PDEs and only come into operation when sharp wave fronts are present. For smoothly changing waves, the flux limiters do not operate and the spatial derivatives can be represented by higher order approximations without introducing spurious oscillations. Consider the 1D semi-discrete scheme below,

where, and represent edge fluxes for the i-th cell. If these edge fluxes can be represented by low and high resolution schemes, then a flux limiter can switch between these schemes depending upon the gradients close to the particular cell, as follows,

where

  • is the low resolution flux,
  • is the high resolution flux,
  • is the flux limiter function, and
  • represents the ratio of successive gradients on the solution mesh, i.e.,

The limiter function is constrained to be greater than or equal to zero, i.e., . Therefore, when the limiter is equal to zero (sharp gradient, opposite slopes or zero gradient), the flux is represented by a low resolution scheme. Similarly, when the limiter is equal to 1 (smooth solution), it is represented by a high resolution scheme. The various limiters have differing switching characteristics and are selected according to the particular problem and solution scheme. No particular limiter has been found to work well for all problems, and a particular choice is usually made on a trial and error basis.

Limiter functions

The following are common forms of flux/slope limiter function, :

  • CHARM [not 2nd order TVD] [1]
  • HCUS [not 2nd order TVD] [2]
  • HQUICK [not 2nd order TVD] [2]
  • Koren[3] – third-order accurate for sufficiently smooth data[4]
  • minmod – symmetric [5]
  • monotonized central (MC) – symmetric [6]
  • Osher [7]
  • ospre – symmetric [2]
  • smart [not 2nd order TVD] [8]
  • superbee – symmetric [5]
  • Sweby – symmetric [9]
  • UMIST – symmetric [10]
  • van Albada 1 – symmetric [11]
  • van Albada 2 – alternative form [not 2nd order TVD] used on high spatial order schemes [12]
  • van Leer – symmetric [13]
  • All the above limiters indicated as being symmetric, exhibit the following symmetry property,

This is a desirable property as it ensures that the limiting actions for forward and backward gradients operate in the same way.

Admissible limiter region for second-order TVD schemes.

Unless indicated to the contrary, the above limiter functions are second order TVD. This means that they are designed such that they pass through a certain region of the solution, known as the TVD region, in order to guarantee stability of the scheme. Second-order, TVD limiters satisfy at least the following criteria:

  • ,
  • ,
  • ,
  • ,

The admissible limiter region for second-order TVD schemes is shown in the Sweby Diagram opposite,[9] and plots showing limiter functions overlaid onto the TVD region are shown below. In this image, plots for the Osher and Sweby limiters have been generated using .

Limiter functions overlaid onto second-order TVD region.

Generalised minmod limiter

An additional limiter that has an interesting form is the van-Leer's one-parameter family of minmod limiters.[14][15][16] It is defined as follows

Note: is most dissipative for when it reduces to and is least dissipative for .

See also

Notes

  1. ^ Zhou, G. (1995), Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers (PhD Thesis), Goteborg, Sweden: Chalmers Univ. of Tech.
  2. ^ a b c Waterson, N.P.; Deconinck, H. (1995), A unified approach to the design and application of bounded higher-order convection schemes (VKI Preprint 1995-21)
  3. ^ Koren, B. (1993), "A robust upwind discretisation method for advection, diffusion and source terms", in Vreugdenhil, C.B.; Koren, B. (eds.), Numerical Methods for Advection–Diffusion Problems, Braunschweig: Vieweg, p. 117, ISBN 3-528-07645-3
  4. ^ Kuzmin, D. (2006), "On the design of general-purpose flux limiters for implicit FEM with a consistent mass matrix. I. Scalar convection", Journal of Computational Physics, 219 (2): 513–531, Bibcode:2006JCoPh.219..513K, doi:10.1016/j.jcp.2006.03.034
  5. ^ a b Roe, P.L. (1986), "Characteristic-based schemes for the Euler equations", Annu. Rev. Fluid Mech., 18: 337–365, Bibcode:1986AnRFM..18..337R, doi:10.1146/annurev.fl.18.010186.002005
  6. ^ van Leer, B. (1977), "Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow", J. Comput. Phys., 23 (3): 263–275, Bibcode:1977JCoPh..23..263V, doi:10.1016/0021-9991(77)90094-8
  7. ^ Chakravarthy, S.R.; Osher, S. (1983), "High resolution applications of the Osher upwind scheme for the Euler equations", Proc. AIAA 6th Computational Fluid Dynamics Conference, pp. 363–373, AIAA Paper 83-1943, archived from the original on 2011-05-17, retrieved 2008-03-31
  8. ^ Gaskell, P.H.; Lau, A.K.C. (1988), "Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm", Int. J. Numer. Methods Fluids, 8 (6): 617–641, Bibcode:1988IJNMF...8..617G, doi:10.1002/fld.1650080602
  9. ^ a b Sweby, P.K. (1984), "High resolution schemes using flux-limiters for hyperbolic conservation laws", SIAM J. Numer. Anal., 21 (5): 995–1011, Bibcode:1984SJNA...21..995S, doi:10.1137/0721062
  10. ^ Lien, F.S.; Leschziner, M.A. (1994), "Upstream monotonic interpolation for scalar transport with application to complex turbulent flows", Int. J. Numer. Methods Fluids, 19 (6): 527–548, Bibcode:1994IJNMF..19..527L, doi:10.1002/fld.1650190606
  11. ^ Van Albada, G.D.; Van Leer, B.; Roberts, W.W. (1982), "A comparative study of computational methods in cosmic gas dynamics", Astronomy and Astrophysics, 108 (1): 76–84, Bibcode:1982A&A...108...76V
  12. ^ Kermani, M.J.; Gerber, A.G.; Stockie, J.M. (2003), "Thermodynamically Based Moisture Prediction Using Roe's Scheme", 4th Conference of Iranian AeroSpace Society, Amir Kabir University of Technology, Tehran, Iran, January 27–29{{citation}}: CS1 maint: location (link) CS1 maint: location missing publisher (link)
  13. ^ van Leer, B. (1974), "Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme", J. Comput. Phys., 14 (4): 361–370, Bibcode:1974JCoPh..14..361V, doi:10.1016/0021-9991(74)90019-9
  14. ^ Van Leer, B. (1979), "Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method", J. Comput. Phys., 32 (1): 101–136, Bibcode:1979JCoPh..32..101V, doi:10.1016/0021-9991(79)90145-1
  15. ^ Harten, A.; Osher, S. (1987), "Uniformly high-order accurate nonoscillatory schemes. I", SIAM J. Numer. Anal., 24 (2): 279–309, Bibcode:1987SJNA...24..279H, doi:10.1137/0724022, S2CID 15957238, archived from the original on September 23, 2017
  16. ^ Kurganov, A.; Tadmor, E. (2000), Solution of Two-Dimensional Riemann problems for Gas Dynamics without Riemann Problem Solvers, Report by Dept. of Mathematics, Univ. Michigan. Available on-line at: CiteSeer.

References

  • Hirsch, C. (1990), Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows, Wiley, ISBN 978-0-471-92452-4
  • Leonard, B.P.; Leschziner, M.A.; McGuirk, J. (1978), "The QUICK algorithm: a uniformly 3rd-order finite-difference method for highly convective flows", Proc. 1st Conf. on Numerical Methods in Laminar & Turbulent Flow, Swansea, p. 807{{citation}}: CS1 maint: location missing publisher (link)

Further reading

  • Laney, Culbert B. (1998), Computational Gasdynamics, Cambridge University Press, ISBN 978-0-521-57069-5
  • LeVeque, Randall (1990), Numerical Methods for Conservation Laws, ETH Lectures in Mathematics Series, Birkhauser-Verlag, ISBN 3-7643-2464-3
  • LeVeque, Randall (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, ISBN 0-521-00924-3
  • Toro, E.F. (1999), Riemann Solvers and Numerical Methods for Fluid Dynamics (2nd ed.), Springer-Verlag, ISBN 3-540-65966-8
  • Tannehill, John C.; Anderson, Dale Arden; Pletcher, Richard H. (1997), Computational Fluid Mechanics and Heat Transfer (2nd ed.), Taylor and Francis, ISBN 1-56032-046-X
  • Wesseling, Pieter (2001), Principles of Computational Fluid Dynamics, Springer-Verlag, ISBN 3-540-67853-0

Read other articles:

Chiesa di San MartinoLa facciataStato Italia RegioneToscana LocalitàPastine (Barberino Val d'Elsa) Coordinate43°31′27.29″N 11°07′56.63″E / 43.524247°N 11.132397°E43.524247; 11.132397Coordinate: 43°31′27.29″N 11°07′56.63″E / 43.524247°N 11.132397°E43.524247; 11.132397 Religionecattolica TitolareMartino di Tours Arcidiocesi Firenze Stile architettonicoromanico CompletamentoGià esistente nel 1123;ricostruita dal 1315 Modifica dati su...

 

2013 single by BirdyNo AngelSingle by Birdyfrom the album Fire Within Released18 September 2013Recorded2012–2013Length4:03LabelWarnerSongwriter(s) Jasmine van den Bogaerde Ben Lovett Producer(s)Jim AbbissBirdy singles chronology Wings (2013) No Angel (2013) Light Me Up (2014) Live videoNo Angel on YouTube No Angel is a song by English musician Birdy. The song was released as a digital download on 18 September 2013 in the United Kingdom, as the second single from her second studio album, Fir...

 

まず最初に、心に留めておくべき重要な注意事項をひとつ: 数人のウィキペディアンが 刑法 関連の記事でどのようにデータを整理するかについての提案をすべく集まりました。これら単なる提案であり、記事を執筆する際に迷わず作業を進めるよう手助けするためのものです。これらの提案に従う義務があるなどと感じたりするべきではありません。けれども、何を書

تكاثف بوز-أينشتاينمعلومات عامةالاسم المختصر BEC (بالإنجليزية) BEK (بالألمانية) CBE (بالإسبانية) سُمِّي باسم ألبرت أينشتاينساتيندرا ناث بوز تعريف الصيغة T c = ( n ζ ( 3 / 2 ) ) 2 / 3 2 π ℏ 2 m k B {\displaystyle T_{\text{c}}=\left({\frac {n}{\zeta (3/2)}}\right)^{2/3}{\frac {2\pi \hbar ^{2}}{mk_{\text{B}}}}} في تحديد الصيغة T c {\displaystyle T...

 

2011 concert tour by Lil Wayne I Am Music II TourTour by Lil WayneStart dateMarch 18, 2011End dateSeptember 11, 2011Legs2No. of shows67Lil Wayne concert chronology America's Most Wanted Tour (2009) I Am Music II Tour (2011) The I Am Music II Tour (also referred as I Am Still Music Tour), was a North American concert tour headlined by American rapper Lil Wayne, and with several special guests. The tour was announced on January 24, 2011, and the tickets went on sale on February 4.[1] Op...

 

蕎麦殻 蕎麦殻(そばがら)は、ソバを収穫し数日間天日で乾燥させ、ソバの実を取り去った後に残った殻を言う。 蕎麦粉を精製するときに、実とともに引いて風味を出す場合もある。 寝具の枕の中身として使われることが多い。近年は蕎麦アレルギー他の理由で、蕎麦殻枕の需要は伸びていない[1]。そのため、多くが産廃として処分され、その有効利用が課題と...

Pour les articles homonymes, voir Ridane (homonymie). Cet article est une ébauche concernant l’Algérie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ridane Noms Nom arabe ريدان Administration Pays Algérie Wilaya Bouira Code postal 10083 Code ONS 1032 Géographie Coordonnées 36° 04′ 26″ nord, 3° 27′ 43″ est Localisation Localisation de la commune dans la wilaya...

 

Book by Drew Karpyshyn Mass Effect: Retribution Original cover of Mass Effect: RetributionAuthorDrew KarpyshynCountryCanadaLanguageEnglishSeriesMass EffectGenreScience fictionPublisherDel Rey BooksPublication date27 July 2010[1]Media typePrint (Paperback)Pages356ISBN978-0-345-52072-2Preceded byMass Effect: Ascension Followed byMass Effect: Deception  Mass Effect: Retribution is a science fiction novel by Canadian writer Drew Karpyshyn set in the Mass Effect un...

 

ملخص معلومات الملف وصف غلاف ألبوم نور عيني مصدر http://q8loco.wordpress.com/2008/12/27/rashed-almajed-new-album/ تاريخ 27 ديسمبر منتج هذا الملف لا يمتلك معلومات المنتج، وربما تنقصه بعض المعلومات الأخرى. يجب أن تحتوي الملفات على معلومات موجزة حول الملف لإعلام الآخرين بالمحتوى والمؤلف والمصدر والتاريخ إ...

Part of a series on the History of Indonesia Timeline Prehistory Java Man 1,000,000 BP Flores Man 94,000–12,000 BP Toba catastrophe 75,000 BP Buni culture 400 BCE Hindu and Buddhist kingdoms Kutai Kingdom 350–1605 Tarumanagara Kingdom 400s–500s Kalingga Kingdom 500s–600s Melayu Kingdom 600s–1347 Srivijaya Empire 600s–1025 Shailendra dynasty 600s–900s Mataram Kingdom 716–1016 Bali Kingdom 914–1908 Sunda Kingdom 932–1579 Kahuripan Kingdom 1019–1045 Kediri K...

 

Historic state in modern Ethiopia 1832 map by John Arrowsmith illustrating Hubetta's location in the Emirate of Harar Hubat (Harari: ሆበት Hobät), also known as Hobat, or Kubat was a historical Muslim state located in present-day eastern Ethiopia.[1][2][3] Historically part of the Adal region alongside Gidaya and Hargaya states on the Harar plateau.[4] Hubat is today within a district known as Adare Qadima which includes Garamuelta and its surroundings in ...

 

HabibUthman bin YahyaHabib UthmanNama asalعثمان بن يحيىLahirUsman1822 MPekojan, Batavia, Hindia BelandaMeninggal1913 – 1822; umur -92–-91 tahunBatavia, Hindia BelandaMakamPondok BambuNama lainHabib Usman bin YahyaPekerjaanUlama, MuftiTempat kerjaHindia BelandaDikenal atasMufti BataviaKarya terkenalberdakwahGelarHabibOrang tuaAbdullah bin Aqil bin Umar bin Yahya (ayah)Aminah(ibu) Usman bin Yahya, Utsman ibn Yahya atau Othman bin Yahya (Arab: عثمان...

Síndrome da congestão venosa pélvica Síndrome de congestão pélvicaMioma de útero grande (9 cm) que está causando síndrome de congestão pélvica, como visto na imagem de tomografia computadorizada Especialidade urologia, ginecologia Classificação e recursos externos CID-9 625.5  Leia o aviso médico  A síndrome de congestão pélvica, também conhecida como síndrome da congestão venosa pélvica (SCVP), é uma doença crônica com causa atribuída à dilatação das vei...

 

High speed railway line in China Beijing–Hong Kong high-speed railwayOverviewOther name(s)Jinggang high-speed railwayNative name京港高速铁路StatusOperationalOwnerChina Railway (Mainland section)MTR Corporation (Hong Kong section)LocaleBeijing, Hebei, Shandong, Henan, Anhui, Jiangxi, Guangdong, Hong KongTerminiBeijing FengtaiHong Kong West KowloonServiceTypeHigh-speed railSystemBeijing–Hong Kong (Taipei) corridorOperator(s)China Railway High-speed (Mainland section)MTR (Hong Kong sec...

 

1986 film The Moro AffairItalian theatrical release posterDirected byGiuseppe FerraraWritten byRobert KatzArmenia BalducciGiuseppe FerraraProduced byMauro BerardiStarringGian Maria VolontéCinematographyCamillo BazzoniEdited byRoberto PerpignaniMusic byPino DonaggioProductioncompanyYarno Cinematografica[1]Distributed byVariety DistributionRelease date 20 November 1986 (1986-11-20) (Italy) Running time110 minutesCountryItalyLanguageItalian The Moro Affair (Italian: I...

Kerajaan Bersatu Britania Raya dan Irlandia Utara Keanggotaan Perserikatan Bangsa-BangsaKeanggotaanASnggota penuhSejak1945 (1945)Kursi DK PBBPermanenDuta BesarMatthew Rycroft Bagian dari seri tentangPolitik dan Pemerintahan Britania Raya Konstitusi Konstitusi Perpajakan Monarki Monarki Raja Charles III Pangeran Wales Pangeran William Prerogatif Kerajaan Dewan Penasihat Keluarga Kerajaan Pemerintahan Perdana Menteri Rishi Sunak Deputi Perdana Menteri Dominic Raab Sekretaris Negara Pertama...

 

Portuguese actor, producer, director and television host (1940–2016) Nicolau BreynerGOIH GOMBornJoão Nicolau de Melo Breyner Moreira Lopes(1940-07-30)30 July 1940Serpa, PortugalDied14 March 2016(2016-03-14) (aged 75)Lisbon, PortugalNationalityPortugueseOccupation(s)Actor, screenwriter, producer, director, television hostYears active1964–2016 João Nicolau de Melo Breyner Moreira Lopes GOIH GOM (30 July 1940 – 14 March 2016), known professionally as Nicolau Breyner, was a Port...

 

Species of flowering plant Chrysosplenium oppositifolium Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Order: Saxifragales Family: Saxifragaceae Genus: Chrysosplenium Species: C. oppositifolium Binomial name Chrysosplenium oppositifoliumL.[1] Synonyms[1] Chrysosplenium auriculatum Crantz Chrysosplenium octandrum Caque ex Steud. Chrysosplenium repens Link ex Steud. Saxifraga aurea Garsault Chrysosplenium oppositifolium, ...

Not to be confused with isolationism. Poverty among dispossessed groups of society is usually one of the effects of international isolation. Children in a South African township in 1989, during the country’s international isolation years International isolation is a penalty applied by the international community or a sizeable or powerful group of countries, like the United Nations, towards one nation, government or group of people. The same term may also refer to the state a country finds i...

 

Gaio Sesto CalvinoConsole della Repubblica romanaFondazione di Aix da parte di Sestio Calvino (Joseph Villevieille, 1900) Nome originaleCaius Sextius Calvinus GensSextia Consolato124 a.C. Gaio Sesto Calvino [1] (... – ...; fl. II secolo a.C.) è stato un politico e generale romano del periodo della Repubblica. Biografia Nel 124 a.C. divenne console. Continuò la conquista della Gallia Transalpina di Linguadoca. Sconfisse i Salluvi, catturò e distrusse il loro Oppidum di Entrem...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!