Expander code

Expander codes
bipartite expander graph
Classification
TypeLinear block code
Block length
Message length
Rate
Distance
Alphabet size
Notation-code

In coding theory, expander codes form a class of error-correcting codes that are constructed from bipartite expander graphs. Along with Justesen codes, expander codes are of particular interest since they have a constant positive rate, a constant positive relative distance, and a constant alphabet size. In fact, the alphabet contains only two elements, so expander codes belong to the class of binary codes. Furthermore, expander codes can be both encoded and decoded in time proportional to the block length of the code.

Expander codes

In coding theory, an expander code is a linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph. These codes have good relative distance , where and are properties of the expander graph as defined later, rate , and decodability (algorithms of running time exist).

Definition

Let be a -biregular graph between a set of nodes , called variables, and a set of nodes , called constraints.

Let be a function designed so that, for each constraint , the variables neighboring are .

Let be an error-correcting code of block length . The expander code is the code of block length whose codewords are the words such that, for , is a codeword of .[1]

It has been shown that nontrivial lossless expander graphs exist. Moreover, we can explicitly construct them.[2]

Rate

The rate of is its dimension divided by its block length. In this case, the parity check matrix has size , and hence has rate at least .

Distance

Suppose . Then the distance of a expander code is at least .

Proof

Note that we can consider every codeword in as a subset of vertices , by saying that vertex if and only if the th index of the codeword is a 1. Then is a codeword iff every vertex is adjacent to an even number of vertices in . (In order to be a codeword, , where is the parity check matrix. Then, each vertex in corresponds to each column of . Matrix multiplication over then gives the desired result.) So, if a vertex is adjacent to a single vertex in , we know immediately that is not a codeword. Let denote the neighbors in of , and denote those neighbors of which are unique, i.e., adjacent to a single vertex of .

Lemma 1

For every of size , .

Proof

Trivially, , since implies . follows since the degree of every vertex in is . By the expansion property of the graph, there must be a set of edges which go to distinct vertices. The remaining edges make at most neighbors not unique, so .

Corollary

Every sufficiently small has a unique neighbor. This follows since .

Lemma 2

Every subset with has a unique neighbor.

Proof

Lemma 1 proves the case , so suppose . Let such that . By Lemma 1, we know that . Then a vertex is in iff , and we know that , so by the first part of Lemma 1, we know . Since , , and hence is not empty.

Corollary

Note that if a has at least 1 unique neighbor, i.e. , then the corresponding word corresponding to cannot be a codeword, as it will not multiply to the all zeros vector by the parity check matrix. By the previous argument, . Since is linear, we conclude that has distance at least .

Encoding

The encoding time for an expander code is upper bounded by that of a general linear code - by matrix multiplication. A result due to Spielman shows that encoding is possible in time.[3]

Decoding

Decoding of expander codes is possible in time when using the following algorithm.

Let be the vertex of that corresponds to the th index in the codewords of . Let be a received word, and . Let be , and be . Then consider the greedy algorithm:


Input: received word .

initialize y' to y
while there is a v in R adjacent to an odd number of vertices in V(y')
    if there is an i such that o(i) > e(i)
        flip entry i in y'
    else
        fail

Output: fail, or modified codeword .


Proof

We show first the correctness of the algorithm, and then examine its running time.

Correctness

We must show that the algorithm terminates with the correct codeword when the received codeword is within half the code's distance of the original codeword. Let the set of corrupt variables be , , and the set of unsatisfied (adjacent to an odd number of vertices) vertices in be . The following lemma will prove useful.

Lemma 3

If , then there is a with .

Proof

By Lemma 1, we know that . So an average vertex has at least unique neighbors (recall unique neighbors are unsatisfied and hence contribute to ), since , and thus there is a vertex with .

So, if we have not yet reached a codeword, then there will always be some vertex to flip. Next, we show that the number of errors can never increase beyond .

Lemma 4

If we start with , then we never reach at any point in the algorithm.

Proof

When we flip a vertex , and are interchanged, and since we had , this means the number of unsatisfied vertices on the right decreases by at least one after each flip. Since , the initial number of unsatisfied vertices is at most , by the graph's -regularity. If we reached a string with errors, then by Lemma 1, there would be at least unique neighbors, which means there would be at least unsatisfied vertices, a contradiction.

Lemmas 3 and 4 show us that if we start with (half the distance of ), then we will always find a vertex to flip. Each flip reduces the number of unsatisfied vertices in by at least 1, and hence the algorithm terminates in at most steps, and it terminates at some codeword, by Lemma 3. (Were it not at a codeword, there would be some vertex to flip). Lemma 4 shows us that we can never be farther than away from the correct codeword. Since the code has distance (since ), the codeword it terminates on must be the correct codeword, since the number of bit flips is less than half the distance (so we couldn't have traveled far enough to reach any other codeword).

Complexity

We now show that the algorithm can achieve linear time decoding. Let be constant, and be the maximum degree of any vertex in . Note that is also constant for known constructions.

  1. Pre-processing: It takes time to compute whether each vertex in has an odd or even number of neighbors.
  2. Pre-processing 2: We take time to compute a list of vertices in which have .
  3. Each Iteration: We simply remove the first list element. To update the list of odd / even vertices in , we need only update entries, inserting / removing as necessary. We then update entries in the list of vertices in with more odd than even neighbors, inserting / removing as necessary. Thus each iteration takes time.
  4. As argued above, the total number of iterations is at most .

This gives a total runtime of time, where and are constants.

See also

Notes

This article is based on Dr. Venkatesan Guruswami's course notes.[4]

References

  1. ^ Sipser, M.; Spielman, D.A. (1996). "Expander codes". IEEE Transactions on Information Theory. 42 (6): 1710–1722. doi:10.1109/18.556667.
  2. ^ Capalbo, M.; Reingold, O.; Vadhan, S.; Wigderson, A. (2002). "Randomness conductors and constant-degree lossless expanders". STOC '02 Proceedings of the thirty-fourth annual ACM symposium on Theory of computing. ACM. pp. 659–668. doi:10.1145/509907.510003. ISBN 978-1-58113-495-7. S2CID 1918841.
  3. ^ Spielman, D. (1996). "Linear-time encodable and decodable error-correcting codes". IEEE Transactions on Information Theory. 42 (6): 1723–31. CiteSeerX 10.1.1.47.2736. doi:10.1109/18.556668.
  4. ^ Guruswami, V. (15 November 2006). "Lecture 13: Expander Codes" (PDF). CSE 533: Error-Correcting. University of Washington.
    Guruswami, V. (March 2010). "Notes 8: Expander Codes and their decoding" (PDF). Introduction to Coding Theory. Carnegie Mellon University.
    Guruswami, V. (September 2004). "Guest column: error-correcting codes and expander graphs". ACM SIGACT News. 35 (3): 25–41. doi:10.1145/1027914.1027924. S2CID 17550280.

Read other articles:

  روفنو (بالأوكرانية: Рівне)‏    روفنو روفنو  خريطة الموقع تاريخ التأسيس 1283  تقسيم إداري البلد أوكرانيا (24 أغسطس 1991–) الاتحاد السوفيتي (14 أكتوبر 1939–24 أغسطس 1991)  [1][2] عاصمة لـ الإدارة العسكرية في أوكرانياريفنا أوبلاست  خصائص جغرافية إحداثيات 50°37′11″...

 

1950 International Court of Justice legal case This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this template message) Asylum CaseCourtInternational Cou...

 

DreamsSampul album rilis ulang Eropa 1994 (foto singel CD1 Britania)Lagu oleh The Cranberriesdari album Everybody Else Is Doing It, So Why Can't We?Sisi-B What You Were Liar Dirilis29 September 19921 April 1994 (rilis ulang)FormatCDDirekam1992Genre Rock alternatif shoegaze dream pop Durasi4:32 (album)4:15 (radio Britania)4:02 (radio AS)LabelIslandPencipta Dolores O'Riordan Noel Hogan ProduserStephen StreetVideo musikDreams di YouTubeSampul alternatif Dreams adalah lagu band rock asal Irlandia...

Au Moyen Âge, la route commerciale de la Volga reliait l’Europe du Nord et le nord-ouest de la Russie à la mer Caspienne par la Volga. Les Rous’ utilisaient cette route pour leur commerce avec les pays musulmans sur les rives méridionales de la Caspienne, se rendant parfois aussi loin que Bagdad. Cette route fut progressivement remplacée par celle du Dniepr mieux connue sous le nom de route commerciale des Varègues aux Grecs et perdit son importance au XIe siècle. Les première...

 

Mexican politician In this Spanish name, the first or paternal surname is Novelo and the second or maternal family name is Osuna. Gerardo Novelo OsunaSenator of the Congress of the Union for Baja CaliforniaIncumbentAssumed office March 2023Serving with Alejandra León Gastélum and Gina Cruz BlackledgePreceded byJaime Bonilla ValdezIn office6 December 2018 – 28 March 2022Preceded byJaime Bonilla ValdezSucceeded byJaime Bonilla Valdez Personal detailsBornAlejandr...

 

この項目では、イギリスのミュージシャンについて説明しています。原題が Eric Clapton のアルバムについては「エリック・クラプトン・ソロ」をご覧ください。 エリック・クラプトンCBE カナダ・トロント『TIFF 2017』にて(2017年)基本情報出生名 エリック・パトリック・クラプトン生誕 (1945-03-30) 1945年3月30日(78歳)出身地 イングランド サリー州 ギルフォード市 リプリ

Tin Yat天逸MTR Light Rail stopTin Yat stop's PlatformGeneral informationLocationTin Yat EstateYuen Long District, Hong KongCoordinates22°28′02″N 113°59′56″E / 22.46722°N 113.99889°E / 22.46722; 113.99889Owned byKCR CorporationOperated byMTR CorporationLine(s)705 706 751 751P 761PPlatforms5 side platformsTracks5Connections Bus, minibusConstructionStructure typeAt-gradeAccessibleYesOther informationStation codeTYA (English code)550 (Digital code)Fare zone5A...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2022) توماس كريسب   معلومات شخصية الميلاد 28 أبريل 1876  الوفاة 15 أغسطس 1917 (41 سنة)   بحر الشمال  مواطنة المملكة المتحدة لبريطانيا العظمى وأيرلندا  الحياة ا...

 

此條目的语调或风格可能不適合百科全書的寫作方式。 (2018年3月31日)請根據指南協助改善这篇条目,請在讨论页討論問題所在及加以改善。 建議将此條目或章節併入澳门街道。(討論) 澳門街道列表是根據澳門特別行政區政府地圖繪製暨地籍局的澳門街道門牌查詢系統[1]的中文和葡文街道名稱編列。 澳門街道列表 二劃 丁香圍(中和里) Pátio do Cravo 二龍喉街 Rua da Fo...

British technology tabloid website This article is about the British technology news website. For other uses, see Inquirer (disambiguation). The InquirerNews, reviews, facts and frictionType of siteTech tabloidAvailable inEnglishDissolved19 December 2019; 3 years ago (2019-12-19)OwnerIncisive Media Ltd.Created byMike MageeEditorCarly PageKey peopleRoland Moore-Colyer, Dave Neal, Chris Merriman (as of November 2014), and Alan Martin (as of 2018)CommercialYesReg...

 

Ocean/atmosphere carbon exchange process Oceanic carbon cycle (IPCC) The oceanic carbon cycle (or marine carbon cycle) is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central proces...

 

Historic district in Massachusetts, United States United States historic placePan Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district Pan Burying GroundShow map of MassachusettsShow map of the United StatesLocationMain St., Annie Moore, Burnham, Hudson & Long Hill Rds., Bolton, MassachusettsCoordinates42°25′45″N 71°34′33″W / 42.42917°N 71.57583°W / 42.42917; -71.57583Area300 acres (120 ha)NRHP reference No.100...

Hindu devotional hymn dedicated to Shiva Shiva StutiInformationReligionHinduismAuthorNarayana PanditacharyaLanguageSanskritPeriod13th centuryVerses13 Shiva absorbed in meditation Part of a series onHindu scriptures and texts Shruti Smriti List Vedas Rigveda Samaveda Yajurveda Atharvaveda Divisions Samhita Brahmana Aranyaka Upanishads UpanishadsRig vedic Aitareya Kaushitaki Sama vedic Chandogya Kena Yajur vedic Brihadaranyaka Isha Taittiriya Katha Shvetashvatara Maitri Atharva vedic Mundaka Ma...

 

American attorney and boxing promoter (born 1931) Bob ArumArum at Boardwalk Hall in Atlantic City, April 18, 2010Born (1931-12-08) December 8, 1931 (age 92)Brooklyn, New York, U.S.EducationNew York University (BA)Harvard Law School (JD)Occupation(s)Lawyer, boxing promoter, businessmanYears active1980–presentSpouse Lovee duBoef ​(m. 1991)​Children3 Robert Arum (born December 8, 1931[1]) is an American lawyer and boxing promoter. He is the founde...

 

1948 film directed by Derwin Abrahams The Rangers RideTheatrical release posterDirected byDerwin AbrahamsScreenplay byBasil DickeyProduced byLouis GrayStarringJimmy WakelyDub TaylorVirginia BelmontRiley HillMarshall ReedSteve ClarkCinematographyHarry NeumannEdited byJohn C. FullerProductioncompanyMonogram PicturesDistributed byMonogram PicturesRelease date April 26, 1948 (1948-04-26) Running time56 minutesCountryUnited StatesLanguageEnglish The Rangers Ride is a 1948 American W...

Series of wars between Alexander the Great's successors, 322–281 BC This article is written like a story. Please help rewrite this article to introduce an encyclopedic style and a neutral point of view. (March 2019) Wars of DiadochiThe various kingdoms of the Diadochi c. 301 BCDate322–281 BCLocationMacedon, Greece, Thrace, Anatolia, the Levant, Egypt, Babylonia and PersiaResult First War: Antipatrid VictorySecond War: Antigonid-led Coalition victoryThird War: Antigonid defeatBabylon War: ...

 

Park in Greenbelt, Maryland, managed by the United States National Park Service Greenbelt ParkIUCN category II (national park)Sign at the main entrance into the park. Greenbelt Park, outlinedLocation of Greenbelt Park in MarylandShow map of MarylandLocation in the United StatesShow map of the United StatesLocationGreenbelt, Maryland, U.S.Coordinates38°59′0″N 76°53′52″W / 38.98333°N 76.89778°W / 38.98333; -76.89778[1]Area1,176 acres (4.76 km2)El...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2014) سامي الذهاب إلى الجنوبSammy Going South (بالإنجليزية) معلومات عامةالصنف الفني مغامرةتاريخ الصدور 1963مدة العرض 118 دقيقةاللغة الأصلية الإنجليزيةالبلد المملكة المتح...

Hans van Houten (1950) Hans Rudolf van Houten (* 13. August 1907 in Den Haag; † 31. Juli 1996 in Verbier, Kanton Wallis, Schweiz) war ein niederländischer Diplomat und Politiker der Volkspartij voor Vrijheid en Democratie (VVD), der unter anderem zwischen 1959 und 1963 im Kabinett De Quay Staatssekretär im Außenministerium war. Leben Staatssekretär van Houten (rechts) im Gespräch mit dem deutschen Diplomaten Rolf Otto Lahr (1960). Hans Rudolf van Houten, Nachfahre einer wohlhabenden Pa...

 

此條目可参照外語維基百科相應條目来扩充。 (2022年1月1日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 尼科尔·奥雷姆可能是第一个意识到调和级数发散的人 尼科爾·奧雷姆(Nicole Oresme,又稱Nicolas Oresme、Nicholas O...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!