Euler's continued fraction formula

In the analytic theory of continued fractions, Euler's continued fraction formula is an identity connecting a certain very general infinite series with an infinite continued fraction. First published in 1748, it was at first regarded as a simple identity connecting a finite sum with a finite continued fraction in such a way that the extension to the infinite case was immediately apparent.[1] Today it is more fully appreciated as a useful tool in analytic attacks on the general convergence problem for infinite continued fractions with complex elements.

The original formula

Euler derived the formula as connecting a finite sum of products with a finite continued fraction.

The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite continued fraction.

This is written more compactly using generalized continued fraction notation:

Euler's formula

If ri are complex numbers and x is defined by

then this equality can be proved by induction

.

Here equality is to be understood as equivalence, in the sense that the n'th convergent of each continued fraction is equal to the n'th partial sum of the series shown above. So if the series shown is convergent – or uniformly convergent, when the ri's are functions of some complex variable z – then the continued fractions also converge, or converge uniformly.[2]

Proof by induction

Theorem: Let be a natural number. For complex values ,

and for complex values ,

Proof: We perform a double induction. For , we have

and

Now suppose both statements are true for some .

We have where

by applying the induction hypothesis to .

But if implies implies , contradiction. Hence

completing that induction.

Note that for ,

if , then both sides are zero.

Using and , and applying the induction hypothesis to the values ,

completing the other induction.

As an example, the expression can be rearranged into a continued fraction.

This can be applied to a sequence of any length, and will therefore also apply in the infinite case.

Examples

The exponential function

The exponential function ex is an entire function with a power series expansion that converges uniformly on every bounded domain in the complex plane.

The application of Euler's continued fraction formula is straightforward:

Applying an equivalence transformation that consists of clearing the fractions this example is simplified to

and we can be certain that this continued fraction converges uniformly on every bounded domain in the complex plane because it is equivalent to the power series for ex.

The natural logarithm

The Taylor series for the principal branch of the natural logarithm in the neighborhood of 1 is well known:

This series converges when |x| < 1 and can also be expressed as a sum of products:[3]

Applying Euler's continued fraction formula to this expression shows that

and using an equivalence transformation to clear all the fractions results in


This continued fraction converges when |x| < 1 because it is equivalent to the series from which it was derived.[3]

The trigonometric functions

The Taylor series of the sine function converges over the entire complex plane and can be expressed as the sum of products.

Euler's continued fraction formula can then be applied

An equivalence transformation is used to clear the denominators:

The same argument can be applied to the cosine function:

The inverse trigonometric functions

The inverse trigonometric functions can be represented as continued fractions.

An equivalence transformation yields

The continued fraction for the inverse tangent is straightforward:

A continued fraction for π

We can use the previous example involving the inverse tangent to construct a continued fraction representation of π. We note that

And setting x = 1 in the previous result, we obtain immediately

The hyperbolic functions

Recalling the relationship between the hyperbolic functions and the trigonometric functions,

And that the following continued fractions are easily derived from the ones above:

The inverse hyperbolic functions

The inverse hyperbolic functions are related to the inverse trigonometric functions similar to how the hyperbolic functions are related to the trigonometric functions,

And these continued fractions are easily derived:

See also

References

  1. ^ Leonhard Euler (1748), "18", Introductio in analysin infinitorum, vol. I
  2. ^ H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948; reprinted (1973) by Chelsea Publishing Company ISBN 0-8284-0207-8, p. 17.
  3. ^ a b This series converges for |x| < 1, by Abel's test (applied to the series for log(1 − x)).

Read other articles:

Міхал РокицькийMichał RokickiЗагальна інформаціяГромадянство  Республіка ПольщаНародження 31 березня 1984(1984-03-31)Ратибор, Катовицьке воєводство, Республіка ПольщаСмерть 20 грудня 2021(2021-12-20)[1] (37 років)Ратибор, Сілезьке воєводство, Республіка ПольщаЗріст 1,88 мВага 78 кг...

 

  لمعانٍ أخرى، طالع أول اولسن (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) أول اولسن   معلومات شخصية الميلاد 12 سبتمبر 1894  الوفاة 12 سبتمبر 1980 (86 سنة)   نوروولك (كونيتيكت)  مواطنة الولاي

 

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Agosto de 2014) Roeselare Nome Koninklijke Sport Vereniging Roeselare Fundação 20 de julho de 1921 (fundação)1 de julho de 1999(fusão e registro) Estádio Schiervelde Stadion Capacidade 9.536 pessoas Presidente Luc Espeel Treinador(a) Serhiy Serebrennikov ...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Mercedes-Benz AMG C-Class DTM W203 – news · newspapers · books · scholar · JSTOR (April 2019) Mercedes-Benz AMG C-Class W203 DTMCategoryDeutsche Tourenwagen Masters (Touring Cars)Constructor Mercedes-BenzPredecessorMercedes-Benz CLK DTMSuccessorM...

 

EuceratheriumПеріод існування: ранній плейстоцен — ранній голоцен PreꞒ Ꞓ O S D C P T J K Ꝑ N ▼ Реставрація Біологічна класифікація Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клада: Синапсиди (Synapsida) Клас: Ссавці (Mammalia) Ряд: Парнокопитні (Artiodactyla) Родина: Бикові (Bovidae) Підродина: Козлові (...

 

Award This article is about the award presented by the Baseball Writers' Association of America. For the award presented by The Sporting News, see Sporting News Manager of the Year Award. Major League Baseball Manager of the Year AwardLou Piniella won the 2008 National League Manager of the Year Award, and won twice in the American League.SportBaseballLeagueMajor League BaseballAwarded forBest manager of American League and National LeagueCountryUnited States, CanadaPresented byBaseball Write...

1988 single by Rosanne CashRunaway TrainSingle by Rosanne Cashfrom the album King's Record Shop B-sideSeven Year AcheReleasedJuly 1988GenreCountryLength3:58LabelColumbiaSongwriter(s)John StewartProducer(s)Rodney CrowellRosanne Cash singles chronology If You Change Your Mind (1988) Runaway Train (1988) I Don't Want to Spoil the Party (1989) Runaway Train is a song written by John Stewart, and recorded by American country music artist Rosanne Cash. It was released in July 1988 as the fourth sin...

 

City in Ohio, United States City in Ohio, United StatesDublin, OhioCityDublin City Hall SealMotto: Where Yesterday Meets TomorrowInteractive map of Dublin's locationDublinShow map of OhioDublinShow map of the United StatesCoordinates: 40°6′33″N 83°8′25″W / 40.10917°N 83.14028°W / 40.10917; -83.14028CountryUnited StatesStateOhioCountiesFranklin, Delaware, UnionCity status1987Government • MayorJane FoxArea[1] • City25.04&#...

 

Colombian drug lord (1949–1993) This article is about the Colombian drug lord. For other uses, see Pablo Escobar (disambiguation). In this Spanish name, the first or paternal surname is Escobar and the second or maternal family name is Gaviria. Pablo EscobarEscobar in a 1976 mugshotBornPablo Emilio Escobar Gaviria(1949-12-01)1 December 1949Rionegro, ColombiaDied2 December 1993(1993-12-02) (aged 44)Medellín, ColombiaCause of deathGunshot wound to the headResting placeMonte...

Bridge crossing the Derwent River in Tasmania, Australia For the bridge in Asheville, North Carolina, United States, see Interstate 240 (North Carolina). Bowen BridgeThe Bowen Bridge from the western shoreCoordinates42°49′07″S 147°18′21″E / 42.81861°S 147.30583°E / -42.81861; 147.30583Carries Goodwood RoadCrossesDerwent RiverLocaleHobart, TasmaniaNamed forJohn BowenMaintained byDepartment of Infrastructure, Energy and ResourcesCharacteristicsDesignSegmental...

 

Java software tool This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Apache Ant – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this template message) Apache AntOriginal author(s)James Duncan DavidsonDeveloper(s)Apache Software FoundationInitial release19 July 2000&...

 

Government program in Brazil This article is part of a series aboutLuiz Inácio Lula da Silva Early life Education and work Political positions Honours 35th President of Brazil Presidency Inaugurations first second Cabinet Social & Economic policy Zero Hunger Family Allowance School Voucher PAC Foreign & Military policy G4 BRICS CELAC UNASUR MINUSTAH PROSUB 39th President of Brazil Presidency Transition Inauguration Cabinet Trips Ambassadors Brazilian Congress attack 2023 China visit ...

Sail Karimunjava atau Sail Karimunjawa adalah [1] tahunan yang di selenggarakan di Kabupaten Jepara tepatnya di Kecamatan Karimunjawa. Sail Karimunjava merupakan rangkaian kegiatan bahari tingkat internasional hasil kerja sama Sail Indonesia, Kementerian Kelautan dan Perikanan Indonesia, Dewan Kelautan Indonesia, dan badan pemerintahan Indonesia. Sejarah Pada Tahun 2014 Karimunjawa sudah menjadi tujuan[2] Sail Karimunjava ke tujuh kalinya, salah satu kegiatan ini bertujuan unt...

 

Opera by Frederick Delius A Village Romeo and JulietOpera by Frederick DeliusLibrettistJelka and Frederick DeliusLanguageEnglishPremiere21 February 1907 (1907-02-21)Royal Opera House A Village Romeo and Juliet is an opera by Frederick Delius, the fourth of his six operas. The composer himself, with his wife Jelka, wrote the English-language libretto based on the short story Romeo und Julia auf dem Dorfe by the Swiss author Gottfried Keller. The first performance was at the Komi...

 

Spanish film by Christian Molina I Want to Be a SoldierDirected byChristian MolinaWritten byCuca Canals, Christian MolinaProduced byFerran Monje Carlos Gari Marivi de VillanuevaStarring Fergus Riordan Ben Temple Danny Glover Robert Englund CinematographyJuan Carlos LausínEdited byAlberto de ToroMusic byFederico JusidDistributed byCanónigo FilmsStars PicturesTrees PicturesBlack Flag CinemaRelease date October 2010 (2010-10) Running time88 minutesCountrySpainLanguageEnglish I Want t...

Legislative Assembly constituency in Goa State, India NavelimConstituency No. 33 for the Goa Legislative AssemblyConstituency detailsCountryIndiaRegionWestern IndiaStateGoaDistrictSouth GoaLS constituencySouth GoaTotal electors28,892[1]ReservationNoneMember of Legislative Assembly8th Goa Legislative AssemblyIncumbent Ulhas Tuenkar PartyBharatiya Janata Party Navelim Assembly constituency is one of the 40 Goa Legislative Assembly constituencies of the state of Goa in southern India. Na...

 

بلاي ستيشن بورت hmm hmm hmm hmm hmm وك Xc بلالشعارمعلومات عامةالنوع نظام ألعاب محمولالصانع سونيالمطور سوني كمبيوتر إنترتينمنتعائلة المنتج بلاي ستيشنالجيل الجيل السابعالسعر المبدئي 249٫99 دولار أمريكي المبيعات 82 مليونموقع الويب fr.PlayStation.com… أهم التواريختاريخ الإصدار اليابان 12 ديسم...

 

American gridiron football player (born 1993) American football player Quan BrayBray with the Indianapolis Colts in 2016Personal informationBorn: (1993-04-28) April 28, 1993 (age 30)LaGrange, Georgia, U.S.Height:5 ft 10 in (1.78 m)Weight:184 lb (83 kg)Career informationHigh school:LaGrange (GA) Troup Co.College:AuburnPosition:Wide receiverUndrafted:2015Career history Indianapolis Colts (2015–2017) Buffalo Bills (2017–2018)* Houston Texans (2018)* Birmingham I...

Eva GreenGreen at the 2009 Toronto Film FestivalBornEva Gaëlle Green (1980-07-06) 6 Julie 1980 (age 43)Paris, FraunceNaitionalityFrenchAlma materAmerican School of ParisSt. Paul Drama School, ParisWebber Douglas Academy of Dramatic ArtThriftActress, modelYears active2001–presentPawrentsWalter GreenMarlène JobertKinJoy Green (twin sister)Paul Le Flem (great grandfaither)Marika Green (aunt)Elsa Lunghini (cuisin)Joséphine Jobert (cuisin) Eva Gaëlle Green (French: [ɡʁe...

 

Le ConcertFicha técnicaTítulo orixinalLe ConcertDirectorRadu MihăileanuProdutorAlain AttalGuiónRadu MihăileanuHéctor Cabello ReyesThierry Degrandi Matthew RobbinsAlain-Michel BlancIntérpretesAleksei GuskovMélanie LaurentFrançois BerléandMiou-MiouLionel AbelanskiMúsicaArmand AmarTchaikovskyFotografíaLaurent DaillandMontaxeLudo TrochEstudioEuropaCorpWild BunchFrance 3 CinemaDistribuidoraEuropaCorp. Distribution (Francia)Estrea setembro de 2009 4 de novembro de 2009Duración119 minu...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!