Equipollence (geometry)

In Euclidean geometry, equipollence is a binary relation between directed line segments. Two segments are said to be equipollent when they have the same length and direction. Two equipollent segments are parallel but not necessarily colinear nor overlapping, and vice versa. For example, a segment AB, from point A to point B, has the opposite direction to segment BA; thus AB and BA are not equipollent.

Parallelogram property

If the segments AB and CD are equipollent, then AC and BD are also equipollent

A property of Euclidean spaces is the parallelogram property of vectors: If two segments are equipollent, then they form two sides of a parallelogram:

If a given vector holds between a and b, c and d, then the vector which holds between a and c is the same as that which holds between b and d.

History

Symbol for equipollence

The concept of equipollent line segments was advanced by Giusto Bellavitis in 1835. Subsequently, the term vector was adopted for a class of equipollent line segments. Bellavitis's use of the idea of a relation to compare different but similar objects has become a common mathematical technique, particularly in the use of equivalence relations. Bellavitis used a special notation for the equipollence of segments AB and CD:

The following passages, translated by Michael J. Crowe, show the anticipation that Bellavitis had of vector concepts:

Equipollences continue to hold when one substitutes for the lines in them, other lines which are respectively equipollent to them, however they may be situated in space. From this it can be understood how any number and any kind of lines may be summed, and that in whatever order these lines are taken, the same equipollent-sum will be obtained...
In equipollences, just as in equations, a line may be transferred from one side to the other, provided that the sign is changed...

Thus oppositely directed segments are negatives of each other:

The equipollence where n stands for a positive number, indicates that AB is both parallel to and has the same direction as CD, and that their lengths have the relation expressed by AB = n.CD.[1]

The segment from A to B is a bound vector, while the class of segments equipollent to it is a free vector, in the parlance of Euclidean vectors.

Spherical geometry

Geometric equipollence is also used on the sphere:

To appreciate Hamilton's method, let us first recall the much simpler case of the Abelian group of translations in Euclidean three-dimensional space. Each translation is representable as a vector in space, only the direction and magnitude being significant, and the location irrelevant. The composition of two translations is given by the head-to-tail parallelogram rule of vector addition; and taking the inverse amounts to reversing direction. In Hamilton's theory of turns, we have a generalization of such a picture from the Abelian translation group to the non-Abelian SU(2). Instead of vectors in space, we deal with directed great circle arcs, of length < π on a unit sphere S2 in a Euclidean three-dimensional space. Two such arcs are deemed equivalent if by sliding one along its great circle it can be made to coincide with the other.[2]

On a great circle of a sphere, two directed circular arcs are equipollent when they agree in direction and arc length. An equivalence class of such arcs is associated with a quaternion versor

where a is arc length and r determines the plane of the great circle by perpendicularity.

Abstraction

Properties of the equivalence classes of equipollent segments can be abstracted to define affine space:

If A is a set of points and V is a vector space, then (A, V) is an affine space provided that for any two points a,b in A there is a vector in V, and for any a in A and v in V there is b in A such that and for any three points in A there is the vector equation

Evidently this development depends on previous introduction to abstract vector spaces, in contrast to the introduction of vectors via equivalence classes of directed segments.[3]

References

  1. ^ Michael J. Crowe (1967) A History of Vector Analysis, "Giusto Bellavitis and His Calculus of Equipollences", pp 52–4, University of Notre Dame Press
  2. ^ N. Mukunda, Rajiah Simon and George Sudarshan (1989) "The theory of screws: a new geometric representation for the group SU(1,1), Journal of Mathematical Physics 30(5): 1000–1006 MR0992568
  3. ^ Mikhail Postnikov (1982) Lectures in Geometry Semester I Analytic Geometry pages 45 and 46, via Internet Archive

Read other articles:

Erastus W. JewettLahir(1839-04-01)1 April 1839St. Albans, VermontMeninggal20 Februari 1906(1906-02-20) (umur 66)Burlington, VermontTempat pemakamanChurch Street Cemetery, Swanton (kota), VermontPengabdian Amerika Serikat (Union)Dinas/cabang Union Army (Army of the James) Vermont MilitiaLama dinas1862-1864 (Angkatan Darat)1882-1892 (Militia)Pangkat Letnan Satu (Angkatan Darat) Kolonel (Militia)KesatuanCompany A, 9th Vermont InfantryStaff of the Adjutant General of VermontPerang/perte...

 

Ця стаття є частиною Проєкту:Населені пункти України (рівень: невідомий) Портал «Україна»Мета проєкту — покращувати усі статті, присвячені населеним пунктам та адміністративно-територіальним одиницям України. Ви можете покращити цю статтю, відредагувавши її, а на стор...

 

Álbum de figurinhas da Copa do Mundo FIFA de 2018 Álbum de figurinhas da Copa do Mundo FIFA de 2018 Assunto Copa do Mundo FIFA de 2018 Série Álbuns de figurinhas da Copa do Mundo FIFA Editora Panini Group Formato Álbum de figurinhas Lançamento 16 de março de 2018 Páginas 80 ISBN 858368281X Cronologia 2014 2022 O álbum de figurinhas da Copa do Mundo FIFA de 2018 é o 13.º álbum de figurinhas da Copa do Mundo FIFA lançado pela Panini.[1] Características O álbum conta com 682 figur...

Unincorporated community in Colorado, U.S. Arriola and U.S. Highway 491 Arriola is an unincorporated community in Montezuma County, in the U.S. state of Colorado.[1] History A post office called Arriola was established in 1894, and remained in operation until 1933.[2] The name is said to honor one Spanish officer.[3] References ^ U.S. Geological Survey Geographic Names Information System: Arriola, Colorado ^ Post offices. Jim Forte Postal History. Archived from the ori...

 

العلاقات البوسنية الكيريباتية البوسنة والهرسك كيريباتي   البوسنة والهرسك   كيريباتي تعديل مصدري - تعديل   العلاقات البوسنية الكيريباتية هي العلاقات الثنائية التي تجمع بين البوسنة والهرسك وكيريباتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة...

 

Real estate map of Gem of the Pacific Estate, North Burleigh, ca. 1920 The history of the Gold Coast in Queensland, Australia began in prehistoric times with archaeological evidence revealing occupation of the district by indigenous Australians for at least 23,000 years. The first early European colonizers began arriving in the late 1700s, settlement soon followed throughout the 19th century, and by 1959 the town was proclaimed a city. Today, the Gold Coast is one of the fastest-growing citie...

Norwegian jurist and politician Henrik Ameln Henrik Ameln (29 April 1879 – 17 September 1961) was a Norwegian jurist and politician for the Conservative Party. He was a mayor of Bergen, and served five terms in the Parliament of Norway.[1][2] Personal life He was born in Bergen and grew up on Fjøsanger. He was the son of Theodor Poul Lauritz Ameln (1847–1925) and his wife Olivia Dorothea Hildegund Wilander (1849–1912). He was the nephew of Johan Gerhard Theodor Ameln,&#...

 

Gereja Santo Ignatius LoyolaGereja Katolik Paroki Santo Ignatius Loyola, Jalan MalangGereja Santo Ignatius Loyola, Jalan Malang, JakartaLokasiJl. Malang No.22, Menteng, Jakarta Pusat, JakartaNegara IndonesiaDenominasiGereja Katolik RomaArsitekturStatusGereja parokiStatus fungsionalAktifAdministrasiKeuskupan AgungKeuskupan Agung Jakarta Gereja Santo Ignatius Loyola, Jalan Malang atau yang bernama lengkap resmi Gereja Paroki Ignatius Loyola, Jalan Malang adalah sebuah gereja paroki Katolik...

 

所有泰國扎克里王朝的國王都被稱為拉瑪(Rama)。「拉瑪」這個名字源於印度教神祇羅摩。歷史上,所有泰國君主都使用「拉瑪鐵菩提」作為自己的正式頭銜,這個頭銜至扎克里王朝時期仍被沿用。越南《大南實錄》將扎克里王朝的國王稱為佛王(越南语:Phật vương/佛王)。 至蒙固和朱拉隆功在位期間,受到西方世界的影響,開始使用「拉瑪某世」這類稱號作為非官方...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nursing in Kenya – news · newspapers · books · scholar · JSTOR (April 2016) (Learn how and when to remove this template message)Nursing in Kenya began in 1908[1] and was conducted without a formal framework until 1950. Over the decades, with demand for ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2015) قرية حجر ال عياف  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حضرموت المديرية مديرية حجر الصيعر العزلة عزلة حجر الصيعر السكان التعداد الس...

 

1997 studio album by Thrush HermitSweet HomewreckerStudio album by Thrush HermitReleasedFebruary 11, 1997StudioEasley Recording, Memphis, TennesseeGenreAlternative rock, indie rockLength47:24LabelElektraProducerDoug EasleyThrush Hermit chronology Rock and Roll Detective(1997) Sweet Homewrecker(1997) Clayton Park(1999) Singles from Sweet Homewrecker North DakotaReleased: 1997 Professional ratingsReview scoresSourceRatingAllmusic [1] Sweet Homewrecker is the first full-length al...

Municipal building in Bury St Edmunds, Suffolk, England Market Cross, Bury St EdmundsMarket Cross, Bury St EdmundsLocationCornhill, Bury St EdmundsCoordinates52°14′45″N 0°42′44″E / 52.2458°N 0.7121°E / 52.2458; 0.7121Built1780ArchitectRobert AdamArchitectural style(s)Neoclassical style Listed Building – Grade IOfficial nameMarket CrossDesignated7 August 1952Reference no.1076930 Shown in Suffolk The Market Cross, also known as Bury St Edmunds Town Hal...

 

La Cisterna Comuna Estación Intermodal La Cisterna. BanderaEscudo Ubicación de La Cisterna en el Gran SantiagoCoordenadas 33°32′05″S 70°39′51″O / -33.534833333333, -70.664055555556Entidad Comuna • País  Chile • Región Metropolitana de Santiago • Provincia Santiago • Circunscripción VIII - Santiago Oriente • Distrito N.º 27Alcalde Joel Olmos (Ind.)Eventos históricos   • Fundación 30 de mayo de 1925 (98 a...

 

Shinto shrine in Mishima, Shizuoka, Japan Mishima Taisha三嶋大社Honden of Mishima Taisha ReligionAffiliationShintoDeityMishima DaimyōjinFestivalAugust 16LocationLocation1-5 Omiya-chō 2-chōme, Mishima, Shizuoka, 411-0035Shown within Shizuoka PrefectureShow map of Shizuoka PrefectureMishima Taisha (Japan)Show map of JapanGeographic coordinates35°07′19″N 138°55′08″E / 35.12194°N 138.91889°E / 35.12194; 138.91889 National Treasure of JapanWebsitewww.mish...

Bostonské pití čaje Bostonské pití čaje neboli Bostonský čajový dýchánek (anglicky Boston Tea Party) byl protest amerických kolonistů proti britskému impériu, při kterém bylo v bostonském přístavu zničeno mnoho (přibližně 342) beden lisovaného čaje. Odehrálo se ve čtvrtek 16. prosince 1773 jako jeden z konfliktů směřujících k americké revoluci. Předcházející události Kolkový zákon z roku 1765 (Stamp Act of 1765, povinnost lepit v Americe kolky na mnoho...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Puji RaharjoPuji pada tahun 2022Lahir1971-10-29Lampung Selatan, Lampung, IndonesiaTempat kerjaKantor Kementerian Agama Provinsi Lampung 2022-Sekar...

 

Aksara Latin   Aksara Bali     Suratan puniki kasurat nganggén basa alus. Koordinat: 0°29′48.5″S 117°08′38.0″E / 0.496806°S 117.143889°E / -0.496806; 117.143889 Kota SamarindaKalimantan Kalimantan TimurSaking tekén baduur searah jaum jam: Grand Barumbay Resort, gedung pemerintah resmi, Entrance dari Kalimantan Timur stadion utama, patung Lembuswana (Lembuswana adalah makhluk legendaris yang muncul dalam Kutai mitologi Samarinda), Gedung Ka...

此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2015年8月19日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 爱彼迎AirbnbAirbnb驻加拿大多伦多办公室公司類型上市公司股票代號NASDAQ:ABNB成立2008年創辦人布萊恩·切斯基、喬·傑比亞、內森·布萊卡斯亞克 代表人物布萊恩·切斯基(執行長)喬·傑比亞(CPO)Nathan Blecharczyk(CTO)總部 美國...

 

Iron Horse Plaats in de Verenigde Staten Locatie van Iron Horse in Californië Locatie van Californië in de VS Situering County Plumas County Type plaats Census-designated place Staat Californië Coördinaten 39° 47′ NB, 120° 30′ WL Algemeen Oppervlakte 23,8 km² - land 23,8 km² - water 0,0 km² Inwoners (2000) 321 Hoogte 1.507 m Overig FIPS-code 36735 Portaal    Verenigde Staten Iron Horse is een plaats (census-designated place) in de Amerikaanse staat Californië,...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!