Ensemble forecasting

Top: Weather Research and Forecasting model simulation of Hurricane Rita tracks. Bottom: The spread of National Hurricane Center multi-model ensemble forecast.

Ensemble forecasting is a method used in or within numerical weather prediction. Instead of making a single forecast of the most likely weather, a set (or ensemble) of forecasts is produced. This set of forecasts aims to give an indication of the range of possible future states of the atmosphere.

Ensemble forecasting is a form of Monte Carlo analysis. The multiple simulations are conducted to account for the two usual sources of uncertainty in forecast models: (1) the errors introduced by the use of imperfect initial conditions, amplified by the chaotic nature of the evolution equations of the atmosphere, which is often referred to as sensitive dependence on initial conditions; and (2) errors introduced because of imperfections in the model formulation, such as the approximate mathematical methods to solve the equations. Ideally, the verified future atmospheric state should fall within the predicted ensemble spread, and the amount of spread should be related to the uncertainty (error) of the forecast.

In general, this approach can be used to make probabilistic forecasts of any dynamical system, and not just for weather prediction.

Instances

Today ensemble predictions are commonly made at most of the major operational weather prediction facilities worldwide, including:

Experimental ensemble forecasts are made at a number of universities, such as the University of Washington, and ensemble forecasts in the US are also generated by the US Navy and Air Force. There are various ways of viewing the data such as spaghetti plots, ensemble means or Postage Stamps where a number of different results from the models run can be compared.

History

As proposed by Edward Lorenz in 1963, it is impossible for long-range forecasts—those made more than two weeks in advance—to predict the state of the atmosphere with any degree of skill owing to the chaotic nature of the fluid dynamics equations involved.[1] Furthermore, existing observation networks have limited spatial and temporal resolution (for example, over large bodies of water such as the Pacific Ocean), which introduces uncertainty into the true initial state of the atmosphere. While a set of equations, known as the Liouville equations, exists to determine the initial uncertainty in the model initialization, the equations are too complex to run in real-time, even with the use of supercomputers.[2] The practical importance of ensemble forecasts derives from the fact that in a chaotic and hence nonlinear system, the rate of growth of forecast error is dependent on starting conditions. An ensemble forecast therefore provides a prior estimate of state-dependent predictability, i.e. an estimate of the types of weather that might occur, given inevitable uncertainties in the forecast initial conditions and in the accuracy of the computational representation of the equations. These uncertainties limit forecast model accuracy to about six days into the future.[3] The first operational ensemble forecasts were produced for sub-seasonal timescales in 1985.[4] However, it was realised that the philosophy underpinning such forecasts was also relevant on shorter timescales – timescales where predictions had previously been made by purely deterministic means.

Edward Epstein recognized in 1969 that the atmosphere could not be completely described with a single forecast run due to inherent uncertainty, and proposed a stochastic dynamic model that produced means and variances for the state of the atmosphere.[5] Although these Monte Carlo simulations showed skill, in 1974 Cecil Leith revealed that they produced adequate forecasts only when the ensemble probability distribution was a representative sample of the probability distribution in the atmosphere.[6] It was not until 1992 that ensemble forecasts began being prepared by the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP).

Methods for representing uncertainty

There are two main sources of uncertainty that must be accounted for when making an ensemble weather forecast: initial condition uncertainty and model uncertainty.[7]

Initial condition uncertainty

Initial condition uncertainty arises due to errors in the estimate of the starting conditions for the forecast, both due to limited observations of the atmosphere, and uncertainties involved in using indirect measurements, such as satellite data, to measure the state of atmospheric variables. Initial condition uncertainty is represented by perturbing the starting conditions between the different ensemble members. This explores the range of starting conditions consistent with our knowledge of the current state of the atmosphere, together with its past evolution. There are a number of ways to generate these initial condition perturbations. The ECMWF model, the Ensemble Prediction System (EPS),[8] uses a combination of singular vectors and an ensemble of data assimilations (EDA) to simulate the initial probability density.[9] The singular vector perturbations are more active in the extra-tropics, while the EDA perturbations are more active in the tropics. The NCEP ensemble, the Global Ensemble Forecasting System, uses a technique known as vector breeding.[10][11]

Model uncertainty

Model uncertainty arises due to the limitations of the forecast model. The process of representing the atmosphere in a computer model involves many simplifications such as the development of parametrisation schemes, which introduce errors into the forecast. Several techniques to represent model uncertainty have been proposed.

Perturbed parameter schemes

When developing a parametrisation scheme, many new parameters are introduced to represent simplified physical processes. These parameters may be very uncertain. For example, the 'entrainment coefficient' represents the turbulent mixing of dry environmental air into a convective cloud, and so represents a complex physical process using a single number. In a perturbed parameter approach, uncertain parameters in the model's parametrisation schemes are identified and their value changed between ensemble members. While in probabilistic climate modelling, such as climateprediction.net, these parameters are often held constant globally and throughout the integration,[12] in modern numerical weather prediction it is more common to stochastically vary the value of the parameters in time and space.[13] The degree of parameter perturbation can be guided using expert judgement,[14] or by directly estimating the degree of parameter uncertainty for a given model.[15]

Stochastic parametrisations

A traditional parametrisation scheme seeks to represent the average effect of the sub grid-scale motion (e.g. convective clouds) on the resolved scale state (e.g. the large scale temperature and wind fields). A stochastic parametrisation scheme recognises that there may be many sub-grid scale states consistent with a particular resolved scale state. Instead of predicting the most likely sub-grid scale motion, a stochastic parametrisation scheme represents one possible realisation of the sub-grid. It does this through including random numbers into the equations of motion. This samples from the probability distribution assigned to uncertain processes. Stochastic parametrisations have significantly improved the skill of weather forecasting models, and are now used in operational forecasting centres worldwide.[16] Stochastic parametrisations were first developed at the European Centre for Medium Range Weather Forecasts.[17]

Multi model ensembles

When many different forecast models are used to try to generate a forecast, the approach is termed multi-model ensemble forecasting. This method of forecasting can improve forecasts when compared to a single model-based approach.[18] When the models within a multi-model ensemble are adjusted for their various biases, this process is known as "superensemble forecasting". This type of a forecast significantly reduces errors in model output.[19] When models of different physical processes are combined, such as combinations of atmospheric, ocean and wave models, the multi-model ensemble is called hyper-ensemble.[20]

Probability assessment

The ensemble forecast is usually evaluated by comparing the ensemble average of the individual forecasts for one forecast variable to the observed value of that variable (the "error"). This is combined with consideration of the degree of agreement between various forecasts within the ensemble system, as represented by their overall standard deviation or "spread". Ensemble spread can be visualised through tools such as spaghetti diagrams, which show the dispersion of one quantity on prognostic charts for specific time steps in the future. Another tool where ensemble spread is used is a meteogram, which shows the dispersion in the forecast of one quantity for one specific location. It is common for the ensemble spread to be too small, such that the observed atmospheric state falls outside of the ensemble forecast. This can lead the forecaster to be overconfident in their forecast.[21] This problem becomes particularly severe for forecasts of the weather about 10 days in advance,[22] particularly if model uncertainty is not accounted for in the forecast.

Reliability and resolution (calibration and sharpness)

The spread of the ensemble forecast indicates how confident the forecaster can be in his or her prediction. When ensemble spread is small and the forecast solutions are consistent within multiple model runs, forecasters perceive more confidence in the forecast in general.[21] When the spread is large, this indicates more uncertainty in the prediction. Ideally, a spread-skill relationship should exist, whereby the spread of the ensemble is a good predictor of the expected error in the ensemble mean. If the forecast is reliable, the observed state will behave as if it is drawn from the forecast probability distribution. Reliability (or calibration) can be evaluated by comparing the standard deviation of the error in the ensemble mean with the forecast spread: for a reliable forecast, the two should match, both at different forecast lead times and for different locations.[23]

The reliability of forecasts of a specific weather event can also be assessed. For example, if 30 of 50 members indicated greater than 1 cm rainfall during the next 24 h, the probability of exceeding 1 cm could be estimated to be 60%. The forecast would be considered reliable if, considering all the situations in the past when a 60% probability was forecast, on 60% of those occasions did the rainfall actually exceed 1 cm. In practice, the probabilities generated from operational weather ensemble forecasts are not highly reliable, though with a set of past forecasts (reforecasts or hindcasts) and observations, the probability estimates from the ensemble can be adjusted to ensure greater reliability.

Another desirable property of ensemble forecasts is resolution. This is an indication of how much the forecast deviates from the climatological event frequency – provided that the ensemble is reliable, increasing this deviation will increase the usefulness of the forecast. This forecast quality can also be considered in terms of sharpness, or how small the spread of the forecast is. The key aim of a forecaster should be to maximise sharpness, while maintaining reliability.[24] Forecasts at long leads will inevitably not be particularly sharp (have particularly high resolution), for the inevitable (albeit usually small) errors in the initial condition will grow with increasing forecast lead until the expected difference between two model states is as large as the difference between two random states from the forecast model's climatology.

Calibration of ensemble forecasts

If ensemble forecasts are to be used for predicting probabilities of observed weather variables they typically need calibration in order to create unbiased and reliable forecasts. For forecasts of temperature one simple and effective method of calibration is linear regression, often known in this context as model output statistics. The linear regression model takes the ensemble mean as a predictor for the real temperature, ignores the distribution of ensemble members around the mean, and predicts probabilities using the distribution of residuals from the regression. In this calibration setup the value of the ensemble in improving the forecast is then that the ensemble mean typically gives a better forecast than any single ensemble member would, and not because of any information contained in the width or shape of the distribution of the members in the ensemble around the mean. However, in 2004, a generalisation of linear regression (now known as Nonhomogeneous Gaussian regression) was introduced[25] that uses a linear transformation of the ensemble spread to give the width of the predictive distribution, and it was shown that this can lead to forecasts with higher skill than those based on linear regression alone. This proved for the first time that information in the shape of the distribution of the members of an ensemble around the mean, in this case summarized by the ensemble spread, can be used to improve forecasts relative to linear regression. Whether or not linear regression can be beaten by using the ensemble spread in this way varies, depending on the forecast system, forecast variable and lead time.

Predicting the size of forecast changes

In addition to being used to improve predictions of uncertainty, the ensemble spread can also be used as a predictor for the likely size of changes in the mean forecast from one forecast to the next.[26] This works because, in some ensemble forecast systems, narrow ensembles tend to precede small changes in the mean, while wide ensembles tend to precede larger changes in the mean. This has applications in the trading industries, for whom understanding the likely sizes of future forecast changes can be important.

Co-ordinated research

The Observing System Research and Predictability Experiment (THORPEX) is a 10-year international research and development programme to accelerate improvements in the accuracy of one-day to two-week high impact weather forecasts for the benefit of society, the economy and the environment. It establishes an organizational framework that addresses weather research and forecast problems whose solutions will be accelerated through international collaboration among academic institutions, operational forecast centres and users of forecast products.

One of its key components is THORPEX Interactive Grand Global Ensemble (TIGGE), a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. Centralized archives of ensemble model forecast data, from many international centers, are used to enable extensive data sharing and research.

See also

References

  1. ^ Cox, John D. (2002). Storm Watchers. John Wiley & Sons, Inc. pp. 222–224. ISBN 978-0-471-38108-2.
  2. ^ Manousos, Peter (2006-07-19). "Ensemble Prediction Systems". Hydrometeorological Prediction Center. Retrieved 2010-12-31.
  3. ^ Weickmann, Klaus, Jeff Whitaker, Andres Roubicek and Catherine Smith (2001-12-01). The Use of Ensemble Forecasts to Produce Improved Medium Range (3–15 days) Weather Forecasts. Climate Diagnostics Center. Retrieved 2007-02-16.
  4. ^ Palmer, Tim (2018). "The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years". Quarterly Journal of the Royal Meteorological Society. 145 (S1): 12–24. arXiv:1803.06940. Bibcode:2019QJRMS.145S..12P. doi:10.1002/qj.3383. ISSN 1477-870X. S2CID 4944687.
  5. ^ Epstein, E.S. (December 1969). "Stochastic dynamic prediction". Tellus A. 21 (6): 739–759. Bibcode:1969Tell...21..739E. doi:10.1111/j.2153-3490.1969.tb00483.x.
  6. ^ Leith, C.E. (June 1974). "Theoretical Skill of Monte Carlo Forecasts". Monthly Weather Review. 102 (6): 409–418. Bibcode:1974MWRv..102..409L. doi:10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2. ISSN 1520-0493.
  7. ^ Slingo, Julia; Palmer, Tim (2011-12-13). "Uncertainty in weather and climate prediction". Phil. Trans. R. Soc. A. 369 (1956): 4751–4767. Bibcode:2011RSPTA.369.4751S. doi:10.1098/rsta.2011.0161. ISSN 1364-503X. PMC 3270390. PMID 22042896.
  8. ^ "The Ensemble Prediction System (EPS)". ECMWF. Archived from the original on 2010-10-30. Retrieved 2011-01-05.
  9. ^ "Quantifying forecast uncertainty | ECMWF". www.ecmwf.int. 2013-11-29. Retrieved 2016-11-20.
  10. ^ Toth, Zoltan; Kalnay, Eugenia (December 1997). "Ensemble Forecasting at NCEP and the Breeding Method". Monthly Weather Review. 125 (12): 3297–3319. Bibcode:1997MWRv..125.3297T. CiteSeerX 10.1.1.324.3941. doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2. ISSN 1520-0493. S2CID 14668576.
  11. ^ Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. (January 1996). "The ECMWF Ensemble Prediction System: Methodology and validation". Quarterly Journal of the Royal Meteorological Society. 122 (529): 73–119. Bibcode:1996QJRMS.122...73M. doi:10.1002/qj.49712252905.
  12. ^ "Perturbed Physics Ensembles | climateprediction.net". www.climateprediction.net. Retrieved 2016-11-20.
  13. ^ McCabe, Anne; Swinbank, Richard; Tennant, Warren; Lock, Adrian (2016-10-01). "Representing model uncertainty in the Met Office convection-permitting ensemble prediction system and its impact on fog forecasting". Quarterly Journal of the Royal Meteorological Society. 142 (700): 2897–2910. Bibcode:2016QJRMS.142.2897M. doi:10.1002/qj.2876. ISSN 1477-870X. S2CID 124729470.
  14. ^ Ollinaho, Pirkka; Lock, Sarah-Jane; Leutbecher, Martin; Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Forbes, Richard M.; Haiden, Thomas; Hogan, Robin J. (2016-10-01). "Towards process-level representation of model uncertainties: Stochastically perturbed parametrisations in the ECMWF ensemble". Quarterly Journal of the Royal Meteorological Society. 143 (702): 408–422. Bibcode:2017QJRMS.143..408O. doi:10.1002/qj.2931. ISSN 1477-870X. S2CID 125248441.
  15. ^ Christensen, H. M.; Moroz, I. M.; Palmer, T. N. (2015-02-04). "Stochastic and Perturbed Parameter Representations of Model Uncertainty in Convection Parameterization". Journal of the Atmospheric Sciences. 72 (6): 2525–2544. Bibcode:2015JAtS...72.2525C. doi:10.1175/JAS-D-14-0250.1. ISSN 0022-4928. S2CID 123117331.
  16. ^ Berner, Judith; Achatz, Ulrich; Batté, Lauriane; Bengtsson, Lisa; De La Cámara, Alvaro; Christensen, Hannah M.; Colangeli, Matteo; Coleman, Danielle R. B.; Crommelin, Daan (2016-07-19). "Stochastic Parameterization: Towards a new view of Weather and Climate Models". Bulletin of the American Meteorological Society. 98 (3): 565. arXiv:1510.08682. Bibcode:2017BAMS...98..565B. doi:10.1175/BAMS-D-15-00268.1. ISSN 0003-0007. S2CID 33134061.
  17. ^ Buizza, R.; Milleer, M.; Palmer, T. N. (1999-10-01). "Stochastic representation of model uncertainties in the ECMWF ensemble prediction system". Quarterly Journal of the Royal Meteorological Society. 125 (560): 2887–2908. Bibcode:1999QJRMS.125.2887B. doi:10.1002/qj.49712556006. ISSN 1477-870X. S2CID 123346799.
  18. ^ Zhou, Binbin and Jun Du (February 2010). "Fog Prediction From a Multimodel Mesoscale Ensemble Prediction System" (PDF). Weather and Forecasting. 25 (1): 303. Bibcode:2010WtFor..25..303Z. doi:10.1175/2009WAF2222289.1. S2CID 4947206. Retrieved 2011-01-02.
  19. ^ Cane, D. and M. Milelli (2010-02-12). "Multimodel SuperEnsemble technique for quantitative precipitation forecasts in Piemonte region". Natural Hazards and Earth System Sciences. 10 (2): 265. Bibcode:2010NHESS..10..265C. doi:10.5194/nhess-10-265-2010.
  20. ^ Vandenbulcke, L.; et al. (2009). "Super-Ensemble techniques: application to surface drift prediction" (PDF). Progress in Oceanography. 82 (3): 149–167. Bibcode:2009PrOce..82..149V. doi:10.1016/j.pocean.2009.06.002.
  21. ^ a b Warner, Thomas Tomkins (2010). Numerical Weather and Climate Prediction. Cambridge University Press. pp. 266–275. ISBN 978-0-521-51389-0.
  22. ^ Palmer, T.N.; G.J. Shutts; R. Hagedorn; F.J. Doblas-Reyes; T. Jung; M. Leutbecher (May 2005). "Representing Model Uncertainty in Weather and Climate Prediction". Annual Review of Earth and Planetary Sciences. 33: 163–193. Bibcode:2005AREPS..33..163P. doi:10.1146/annurev.earth.33.092203.122552.
  23. ^ Leutbecher, M.; Palmer, T. N. (2008-03-20). "Ensemble forecasting". Journal of Computational Physics. Predicting weather, climate and extreme events. 227 (7): 3515–3539. Bibcode:2008JCoPh.227.3515L. doi:10.1016/j.jcp.2007.02.014.
  24. ^ Gneiting, Tilmann; Balabdaoui, Fadoua; Raftery, Adrian E. (2007-04-01). "Probabilistic forecasts, calibration and sharpness". Journal of the Royal Statistical Society, Series B. 69 (2): 243–268. CiteSeerX 10.1.1.142.9002. doi:10.1111/j.1467-9868.2007.00587.x. S2CID 123181502.
  25. ^ Jewson, S; Brix, A; Ziehmann, C (2004). "A new parametric model for the assessment and calibration of medium-range ensemble temperature forecasts". Atmospheric Science Letters. 5 (5): 96–102. arXiv:physics/0308057. Bibcode:2004AtScL...5...96J. doi:10.1002/asl.69. S2CID 118358858.
  26. ^ Jewson, S; Ziehmann, C (2004). "Using ensemble forecasts to predict the size of forecast changes, with application to weather swap value at risk". Atmospheric Science Letters. 4 (1–4): 15–27. doi:10.1016/S1530-261X(03)00003-3.

Further reading

Read other articles:

العلاقات السنغالية المولدوفية السنغال مولدوفا   السنغال   مولدوفا تعديل مصدري - تعديل   العلاقات السنغالية المولدوفية هي العلاقات الثنائية التي تجمع بين السنغال ومولدوفا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...

Ini adalah nama Korea; marganya adalah Woo. Woo HyunPekerjaanAktorTahun aktif1990–sekarangAgenMars EntertainmentNama KoreaHangul우현 Hanja禹賢 Alih AksaraU HyeonMcCune–ReischauerU Hyŏn Woo Hyun (lahir 1964) adalah aktor Korea Selatan.[1] Filmografi Film Tahun Judul Peran 2017 Fabricated City 2017 1987: When the Day Comes Kang Min-chang 2018 Detective K: Secret of the Living Dead Tuan Bang 2019 Mal-Mo-E: The Secret Mission Im Dong-ik 2019 Tazza: One Eyed Jack Mool 2020 Be...

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典が不足しています。存命人物の記事は特に、検証可能性を満たしている必要があります。(2016年5月) ほとんどまたは完全に一つの出典に頼っています。(2016年5月) 人物の特筆性の基準を満たしていないおそれがあります。(2016年5月)出典検索?: 久慈マサムネ – ...

село Городне Герб Прапор Країна  Україна Область Волинська область Район Ковельський район Громада Любомльська міська громада Облікова картка картка  Основні дані Засноване 1487 Населення 713 Площа 2,18 км² Густота населення 327,06 осіб/км² Поштовий індекс 44327 Телеф...

Israeli football team from Kiryat Gat This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (November 2021)Football club Hapoel Kiryat Gatהפועל קריית גתFull nameHapoel Kiryat Gat Football Clubמועדון כדורגל הפועל קריית גתFounded1956 Hapoel Kiryat Gat F.C. (Hebrew: הפועל קריית גת) was an Israeli football team...

Włochy na Letnich Igrzyskach Olimpijskich 1920 Kod MKOl ITA Letnie Igrzyska Olimpijskie 1920Antwerpia Chorąży Nedo Nadi Liczba zawodników 174 w 18 dyscyplinach MedalePozycja: 7. Złoto13 Srebro5 Brąz5 Razem23 Włochy na Letnich Igrzyskach Olimpijskich 1920 w Antwerpii reprezentowało 174 zawodników, 173 mężczyzn i jedna kobieta. Reprezentacja wywalczyła 23 medale. Najmłodszym zawodnikiem w reprezentacji był wioślarz Guido De Felip (15 lat 342 dni), a najstarszym szermierz Pie...

This article's use of external links may not follow Wikipedia's policies or guidelines. Please improve this article by removing excessive or inappropriate external links, and converting useful links where appropriate into footnote references. (July 2023) (Learn how and when to remove this template message)Study of the physical care and treatment of photographic materials The conservation and restoration of photographs is the study of the physical care and treatment of photographic materials. ...

2005 American filmKing of the Lost WorldDVD cover artDirected byLeigh ScottWritten byDavid Michael LattCarlos De Los RiosLeigh ScottProduced byDavid Michael LattDavid RimawiPaul BalesStarringBruce BoxleitnerJeff DentonRhett GilesSteve RailsbackThomas DowneyCinematographySteven ParkerEdited byDavid Michael LattMusic byRalph RieckermannDistributed byThe AsylumRelease dateDecember 15, 2005Running time80 minutesCountryUnited StatesLanguageEnglishBudget$1,000,000 King of the Lost World is a 2005 A...

For other uses, see Shinjuku (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shinjuku – news · newspapers · books · scholar · JSTOR (Janu...

Genus of flowering plants in the daisy family Asteraceae Aster Aster amellus Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Asterales Family: Asteraceae Subfamily: Asteroideae Tribe: Astereae Subtribe: Asterinae Genus: AsterL., 1753 Type species Aster amellusL., 1753[1] Synonyms[2] List Asteromoea Blume Bellidastrum Scop. Bellidiaster Dumort. Borkonstia Ignatov Brachyaster Ambrosi Chlamydites J.R.Drumm....

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (يناير 2021) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فض...

Moesia Moesia (bahasa Yunani: Μοισία, Moisía; bahasa Bulgaria: Мизия, Miziya; bahasa Rumania: Moesia; bahasa Serbia: Мезија, Mezija) adalah wilayah kuno dan provinsi Romawi yang terletak di Semenanjung Balkan. Moesia meliputi wilayah Makedonia Utara, Serbia Selatan, Bulgaria Utara, Rumania Tenggara, Moldova Selatan dan Budjak.[1] Menurut catatan geografi kuno, Moesia berbatasan dengan Pegunungan Balkan dan Šar di selatan, Sungai Drina di barat, Sunga...

KeplerTypePrivate, Nonprofit, CoeducationalEstablishedSeptember 2013Students500LocationKigali, RwandaWebsitewww.kepler.org Kepler is a nonprofit higher education program that operates a university campus in Kigali, Rwanda. It is one of the first programs worldwide to integrate massive open online courses (MOOCs), flip teaching, and other education technology practices into a blended learning curriculum, with the goal of lowering the cost of higher education without a reduction in academic qua...

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أبريل 2021) جذور وأغصان تأليف عبد الوهاب الدايني إخراج عبد الهادي مب...

Artikel ini membutuhkan penyuntingan lebih lanjut mengenai tata bahasa, gaya penulisan, hubungan antarparagraf, nada penulisan, atau ejaan. Anda dapat membantu untuk menyuntingnya. Dwi PrantaraPelaksana Tugas Bupati Labuhanbatu UtaraMasa jabatan6 Desember 2020 – 17 Februari 2021PresidenJoko WidodoGubernurEdy RahmayadiPendahuluKhairuddin Syah SitorusPenggantiHendri YantoWakil Bupati Labuhanbatu Utara Ke-2Masa jabatan17 Februari 2016 – 6 Desember 2020PresidenJoko Widod...

2004 studio album by PyramazeMelancholy BeastStudio album by PyramazeReleasedMay 2004RecordedHansen Studios, Denmark (except vocals recorded in the United States)GenrePower metal, progressive metalLength55:24LabelNightmare RecordsMassacre RecordsProducerJacob HansenPyramazePyramaze chronology Melancholy Beast(2004) Legend of the Bone Carver(2006) Professional ratingsReview scoresSourceRatingMetal Crypt Melancholy Beast is the debut studio album by the Danish power metal band Pyramaze,...

Defunct private show business club The Friars Club logo The Friars Club of Beverly Hills (also known as the Friars Club of California) was a private show business club started in 1947 by comedian/actor Milton Berle, among other celebrities who had moved from New York. It was forced to change its name in 2007 after losing a lawsuit with the New York Friars' Club, and later closed. Its building, designed by modernist architect Sidney Eisenshtat, was demolished in 2011. History This section does...

7th episode of the 6th season of Game of Thrones The Broken ManGame of Thrones episodeEpisode no.Season 6Episode 7Directed byMark MylodWritten byBryan CogmanFeatured musicRamin DjawadiCinematography byP. J. DillonEditing byJohn harrisOriginal air dateJune 5, 2016 (2016-06-05)Running time50 minutesGuest appearances Ian McShane as Brother Ray Diana Rigg as Olenna Tyrell Clive Russell as Brynden Tully Tobias Menzies as Edmure Tully Gemma Whelan as Yara Greyjoy Faye Marsay as ...

2011 Esso CupTournament detailsDatesApril 17–23, 2011Teams6Venue(s)Servus Credit Union Place in St. Albert, AlbertaFinal positionsChampions Notre Dame HoundsRunner-up Edmonton ThunderThird place Toronto AerosTournament statisticsScoring leader(s)Olivia Howe (Notre Dame)MVPMorgan Glover← 20102012 → The 2011 Esso Cup was Canada's third annual national women's midget hockey championship, played April 17–23, 2011 at the Servus Credit Union Place in St...

Soekiman WirjosandjojoPerdana Menteri Indonesia ke-6Masa jabatan27 April 1951 – 1 April 1952PresidenSoekarnoWakil PMSuwiryoPendahuluMohammad NatsirPenggantiWilopoMenteri Dalam Negeri Indonesia ke-6Masa jabatan29 Januari 1948 – 4 Agustus 1949PresidenSoekarnoPendahuluMohammad RoemPenggantiWongsonegoro Informasi pribadiLahir(1898-06-19)19 Juni 1898Surakarta, Hindia BelandaMeninggal23 Juli 1974(1974-07-23) (umur 76)Yogyakarta, IndonesiaPartai politik  ...