Endoreduplication

Endoreduplication (also referred to as endoreplication or endocycling) is replication of the nuclear genome in the absence of mitosis, which leads to elevated nuclear gene content and polyploidy. Endoreduplication can be understood simply as a variant form of the mitotic cell cycle (G1-S-G2-M) in which mitosis is circumvented entirely, due to modulation of cyclin-dependent kinase (CDK) activity.[1][2][3][4] Examples of endoreduplication characterised in arthropod, mammalian, and plant species suggest that it is a universal developmental mechanism responsible for the differentiation and morphogenesis of cell types that fulfill an array of biological functions.[1][2] While endoreduplication is often limited to specific cell types in animals, it is considerably more widespread in plants, such that polyploidy can be detected in the majority of plant tissues.[5] Polyploidy and aneuploidy are common phenomena in cancer cells.[6] Given that oncogenesis and endoreduplication likely involve subversion of common cell cycle regulatory mechanisms, a thorough understanding of endoreduplication may provide important insights for cancer biology.

Examples in nature

Endoreduplicating cell types that have been studied extensively in model organisms

Organism Name Cell type Biological function Citation
fly Drosophilia Melanogaster larval tissues (incl. salivary glands) secretion, embryogenesis [7]
fly ovarian follicle, nurse cells nourishment, protection of oocytes [8]
rodent megakaryocyte platelet formation [9]
rodent hepatocyte regeneration [10]
rodent trophoblast giant cell placental development, nourishment of embryo [11]
plant Arabidopsis Thaliana trichome defense from herbivory, homeostasis [12]
plant leaf epidermal cell leaf size, structure [13]
plant endosperm nourishment of embryo [14]
nematode Caenorhabditis elegans hypodermis secretion, body size [15]
nematode intestine unknown [16]

Endoreduplication, endomitosis and polytenization

Endoreduplication, endomitosis and polytenization are three different processes resulting in polyploidization of a cell in a regulated manner. In endoreduplication cells skip M phase completely by exiting the mitotic cell cycle in the G2 phase after completing the S phase several times, resulting in a mononucleated polyploid cell. The cell ends up with twice as many copies of each chromosome per repeat of the S phase.[17] Endomitosis is a type of cell cycle variation where mitosis is initiated, but stopped during anaphase and thus cytokinesis is not completed. The cell ends up with multiple nuclei in contrast to a cell undergoing endoreduplication.[17][18] Therefore depending on how far the cell progresses through mitosis, this will give rise to a mononucleated or binucleated polyploid cell. Polytenization arises with under- or overamplification of some genomic regions, creating polytene chromosomes.[3][4]

Endocycling vs. endomitosis

Biological significance

Based on the wide array of cell types in which endoreduplication occurs, a variety of hypotheses have been generated to explain the functional importance of this phenomenon.[1][2] Unfortunately, experimental evidence to support these conclusions is somewhat limited.

Cell differentiation

In developing plant tissues the transition from mitosis to endoreduplication often coincides with cell differentiation and morphogenesis.[19] However it remains to be determined whether endoreduplication and polyploidy contribute to cell differentiation or vice versa. Targeted inhibition of endoreduplication in trichome progenitors results in the production of multicellular trichomes that exhibit relatively normal morphology, but ultimately dedifferentiate and undergo absorption into the leaf epidermis.[20] This result suggests that endoreduplication and polyploidy may be required for the maintenance of cell identity.

Cell/organism size

Cell ploidy often correlates with cell size,[13][15] and in some instances, disruption of endoreduplication results in diminished cell and tissue size [21] suggesting that endoreduplication may serve as a mechanism for tissue growth. Relative to mitosis, endoreduplication does not require cytoskeletal rearrangement or the production of new cell membrane and it often occurs in cells that have already differentiated. As such it may represent an energetically efficient alternative to cell proliferation among differentiated cell types that can no longer afford to undergo mitosis.[22] While evidence establishing a connection between ploidy and tissue size is prevalent in the literature, contrary examples also exist.[19]

Oogenesis and embryonic development

Endoreduplication is commonly observed in cells responsible for the nourishment and protection of oocytes and embryos. It has been suggested that increased gene copy number might allow for the mass production of proteins required to meet the metabolic demands of embryogenesis and early development.[1] Consistent with this notion, mutation of the Myc oncogene in Drosophila follicle cells results in reduced endoreduplication and abortive oogenesis.[23] However, reduction of endoreduplication in maize endosperm has limited effect on the accumulation of starch and storage proteins, suggesting that the nutritional requirements of the developing embryo may involve the nucleotides that comprise the polyploid genome rather than the proteins it encodes.[24]

Buffering the genome

Another hypothesis is that endoreduplication buffers against DNA damage and mutation because it provides extra copies of important genes.[1] However, this notion is purely speculative and there is limited evidence to the contrary. For example, analysis of polyploid yeast strains suggests that they are more sensitive to radiation than diploid strains.[25]

Stress response

Research in plants suggests that endoreduplication may also play a role in modulating stress responses. By manipulating expression of E2fe (a repressor of endocycling in plants), researchers were able to demonstrate that increased cell ploidy lessens the negative impact of drought stress on leaf size.[26] Given that the sessile lifestyle of plants necessitates a capacity to adapt to environmental conditions, it is appealing to speculate that widespread polyploidization contributes to their developmental plasticity

Genetic control of endoreplication

The best-studied example of a mitosis-to-endoreduplication transition occurs in Drosophila follicle cells and is activated by Notch signaling.[27] Entry into endoreduplication involves modulation of mitotic and S-phase cyclin-dependent kinase (CDK) activity.[28] Inhibition of M-phase CDK activity is accomplished via transcriptional activation of Cdh/fzr and repression of the G2-M regulator string/cdc25.[28][29] Cdh/fzr is responsible for activation of the anaphase-promoting complex (APC) and subsequent proteolysis of the mitotic cyclins. String/cdc25 is a phosphatase that stimulates mitotic cyclin-CDK complex activity. Upregulation of S-phase CDK activity is accomplished via transcriptional repression of the inhibitory kinase dacapo. Together, these changes allow for the circumvention of mitotic entry, progression through G1, and entry into S-phase. The induction of endomitosis in mammalian megakaryocytes involves activation of the c-mpl receptor by the thrombopoietin (TPO) cytokine and is mediated by ERK1/2 signaling.[30] As with Drosophila follicle cells, endoreduplication in megakaryocytes results from activation of S-phase cyclin-CDK complexes and inhibition of mitotic cyclin-CDK activity.[31][32]

Notch regulation of endocycling

Entry into S-phase during endoreduplication (and mitosis) is regulated through the formation of a prereplicative complex (pre-RC) at replication origins, followed by recruitment and activation of the DNA replication machinery. In the context of endoreduplication these events are facilitated by an oscillation in cyclin E-Cdk2 activity. Cyclin E-Cdk2 activity drives the recruitment and activation of the replication machinery,[33] but it also inhibits pre-RC formation,[34] presumably to ensure that only one round of replication occurs per cycle. Failure to maintain control over pre-RC formation at replication origins results in a phenomenon known as "rereplication" which is common in cancer cells.[2] The mechanism by which cyclin E-Cdk2 inhibits pre-RC formation involves downregulation of APC-Cdh1-mediated proteolysis and accumulation of the protein Geminin, which is responsible for sequestration of the pre-RC component Cdt1.[35][36]

Oscillations in Cyclin E-Cdk2 activity are modulated via transcriptional and post-transcriptional mechanisms. Expression of cyclin E is activated by E2F transcription factors that were shown to be required for endoreduplication.[37][38][39] Recent work suggests that observed oscillations in E2F and cyclin E protein levels result from a negative-feedback loop involving Cul4-dependent ubiquitination and degradation of E2F.[40] Post-transcriptional regulation of cyclin E-Cdk2 activity involves Ago/Fbw7-mediated proteolytic degradation of cyclin E [41][42] and direct inhibition by factors such as Dacapo and p57.[43][44]

Premeiotic endomitosis in unisexual vertebrates

The unisexual salamanders (genus Ambystoma) are the oldest known unisexual vertebrate lineage, having arisen about 5 million years ago.[45] In these polyploid unisexual females, an extra premeiotic endomitotic replication of the genome, doubles the number of chromosomes.[46] As a result, the mature eggs that are produced subsequent to the two meiotic divisions have the same ploidy as the somatic cells of the adult female salamander. Synapsis and recombination during meiotic prophase I in these unisexual females is thought to ordinarily occur between identical sister chromosomes and occasionally between homologous chromosomes. Thus little, if any, genetic variation is produced. Recombination between homeologous chromosomes occurs rarely, if at all.[46]

References

  1. ^ a b c d e Edgar BA, Orr-Weaver TL (2001). "Endoreplication cell cycles: more for less". Cell. 105 (3): 297–306. doi:10.1016/S0092-8674(01)00334-8. PMID 11348589.
  2. ^ a b c d Lee HO, Davidson JM, Duronio RJ (2008). "Endoreplication: polyploidy with purpose". Genes & Development. 23 (21): 2461–77. doi:10.1101/gad.1829209. PMC 2779750. PMID 19884253.
  3. ^ a b Edgar BA, Zielke N, Gutierrez C (2014-02-21). "Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth". Nature Reviews Molecular Cell Biology. 15 (3): 197–210. doi:10.1038/nrm3756. ISSN 1471-0080. PMID 24556841. S2CID 641731.
  4. ^ a b Orr-Weaver TL (2015). "When bigger is better: the role of polyploidy in organogenesis". Trends in Genetics. 31 (6): 307–315. doi:10.1016/j.tig.2015.03.011. PMC 4537166. PMID 25921783.
  5. ^ Galbraith DW, Harkins KR, Knapp S (1991). "Systemic Endopolyploidy in Arabidopsis thaliana". Plant Physiology. 96 (3): 985–9. doi:10.1104/pp.96.3.985. PMC 1080875. PMID 16668285.
  6. ^ Storchova Z, Pellman D (2004). "From polyploidy to aneuploidy, genome instability and cancer". Nature Reviews Molecular Cell Biology. 5 (1): 45–54. doi:10.1038/nrm1276. PMID 14708009. S2CID 11985415.
  7. ^ Hammond MP, Laird CD (1985). "Control of DNA replication and spatial distribution of defined DNA sequences in salivary gland cells of Drosophila melanogaster". Chromosoma. 91 (3–4): 279–286. doi:10.1007/BF00328223. PMID 3920018. S2CID 1515555.
  8. ^ Hammond MP, Laird CD (1985). "Chromosome structure and DNA replication in nurse and follicle cells of Drosophila melanogaster". Chromosoma. 91 (3–4): 267–278. doi:10.1007/BF00328222. PMID 3920017. S2CID 7919061.
  9. ^ Ravid K, Lu J, Zimmet JM, Jones MR (2002). "Roads to polyploidy: The megakaryocyte example". Journal of Cellular Physiology. 190 (1): 7–20. doi:10.1002/jcp.10035. PMID 11807806. S2CID 37297740.
  10. ^ Wang MJ, Chen F, Lau JT, Hu YP (2017-05-18). "Hepatocyte polyploidization and its association with pathophysiological processes". Cell Death & Disease. 8 (5): e2805. doi:10.1038/cddis.2017.167. PMC 5520697. PMID 28518148.
  11. ^ Cross JC (2005). "How to make a placenta: Mechanisms of trophoblast cell differentiation in mice-a review". Placenta. 26: S3–9. doi:10.1016/j.placenta.2005.01.015. PMID 15837063.
  12. ^ Hulskamp M, Schnittger A, Folkers U (1999). Pattern formation and cell differentiation: Trichomes in Arabidopsis as a genetic model system. International Review of Cytology. Vol. 186. pp. 147–178. doi:10.1016/S0074-7696(08)61053-0. ISBN 978-0-12-364590-6. PMID 9770299.
  13. ^ a b Melaragno JE, Mehrotra B, Coleman AW (1993). "Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis". The Plant Cell. 5 (11): 1661–8. doi:10.1105/tpc.5.11.1661. JSTOR 3869747. PMC 160394. PMID 12271050.
  14. ^ Sabelli PA, Larkins BA (2009). "The Development of Endosperm in Grasses". Plant Physiology. 149 (1): 14–26. doi:10.1104/pp.108.129437. PMC 2613697. PMID 19126691.
  15. ^ a b Flemming AJ, Shen Z, Cunha A, Emmons SW, Leroi AM (2000). "Somatic polyploidization and cellular proliferation drive body size evolution in nematodes". PNAS. 97 (10): 5285–90. Bibcode:2000PNAS...97.5285F. doi:10.1073/pnas.97.10.5285. PMC 25820. PMID 10805788.
  16. ^ Hedgecock EM, White JG (January 1985). "Polyploid tissues in the nematode Caenorhabditis elegans". Developmental Biology. 107 (1): 128–133. doi:10.1016/0012-1606(85)90381-1. ISSN 0012-1606. PMID 2578115.
  17. ^ a b Zielke N, Edgar BA, DePamphilis ML (2013-01-01). "Endoreplication". Cold Spring Harbor Perspectives in Biology. 5 (1): a012948. doi:10.1101/cshperspect.a012948. ISSN 1943-0264. PMC 3579398. PMID 23284048.
  18. ^ Shu Z, Row S, Deng WM (June 2018). "Endoreplication: The Good, the Bad, and the Ugly". Trends in Cell Biology. 28 (6): 465–474. doi:10.1016/j.tcb.2018.02.006. ISSN 0962-8924. PMC 5962415. PMID 29567370.
  19. ^ a b Inze D, De Veylder L (2006). "Cell cycle regulation in plant development". Annual Review of Genetics. 40: 77–105. doi:10.1146/annurev.genet.40.110405.090431. PMID 17094738.
  20. ^ Bramsiepe J, Wester K, Weinl C, Roodbarkelari F, Kasili R, Larkin JC, Hulskamp M, Schnittger A (2010). Qu LJ (ed.). "Endoreplication Controls Cell Fate Maintenance". PLOS Genetics. 6 (6): e1000996. doi:10.1371/journal.pgen.1000996. PMC 2891705. PMID 20585618.
  21. ^ Lozano E, Saez AG, Flemming AJ, Cunha A, Leroi AM (2006). "Regulation of growth by ploidy in Caenorhabditis elegans". Current Biology. 16 (5): 493–8. Bibcode:2006CBio...16..493L. doi:10.1016/j.cub.2006.01.048. PMID 16527744.
  22. ^ Kondorosi E, Roudier F, Gendreau E (2000). "Plant cell-size control: Growing by ploidy?". Current Opinion in Plant Biology. 3 (6): 488–492. Bibcode:2000COPB....3..488K. doi:10.1016/S1369-5266(00)00118-7. PMID 11074380.
  23. ^ Maines JZ, Stevens LM, Tong X, Stein D (2004). "Drosophila dMyc is required for ovary cell growth and endoreplication". Development. 131 (4): 775–786. doi:10.1242/dev.00932. PMID 14724122.
  24. ^ Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo YM, Maddock S, Gordon-Kamm WJ, Larkins BA (2004). "A Dominant Negative Mutant of Cyclin-Dependent Kinase A Reduces Endoreduplication but Not Cell Size or Gene Expression in Maize Endosperm". The Plant Cell. 16 (7): 1854–69. doi:10.1105/tpc.022178. PMC 514166. PMID 15208390.
  25. ^ Mortimer RK (1958). "Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae". Radiation Research. 9 (3): 312–326. Bibcode:1958RadR....9..312M. doi:10.2307/3570795. JSTOR 3570795. PMID 13579200. S2CID 37053611.
  26. ^ Cookson SJ, Radziejwoski A, Granier C (2006). "Cell and leaf size plasticity in Arabidopsis: what is the role of endoreplication?". Plant, Cell and Environment. 29 (7): 1273–83. doi:10.1111/j.1365-3040.2006.01506.x. PMID 17080949.
  27. ^ Deng WM, Althauser C, Ruohala-Baker H (2001). "Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells". Development. 128 (23): 4737–46. doi:10.1242/dev.128.23.4737. PMID 11731454.
  28. ^ a b Shcherbata HR, Althauser C, Findley SD, Ruohola-Baker H (2004). "The mitotic-to-endocycle switch inDrosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions". Development. 131 (13): 3169–81. doi:10.1242/dev.01172. PMID 15175253.
  29. ^ Schaeffer V, Althauser C, Shcherbata HR, Deng WM, Ruohola-Baker H (2004). "Notch-dependent Fizzy-related/Hec1/Cdh1 expression is required for the mitotic-to-endocycle transition in Drosophila follicle cells". Current Biology. 14 (7): 630–6. Bibcode:2004CBio...14..630S. doi:10.1016/j.cub.2004.03.040. hdl:11858/00-001M-0000-002D-1B8D-3. PMID 15062106. S2CID 18877076.
  30. ^ Kaushansky K (2005). "The molecular mechanisms that control thrombopoiesis". The Journal of Clinical Investigation. 115 (12): 3339–47. doi:10.1172/JCI26674. PMC 1297257. PMID 16322778.
  31. ^ Garcia P, Cales C (1996). "Endoreplication in megakaryoblastic cell lines is accompanied by sustained expression of G1/S cyclins and downregulation of cdc25c". Oncogene. 13 (4): 695–703. PMID 8761290.
  32. ^ Zhang Y, Wang Z, Ravid K (1996). "The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase". Journal of Biological Chemistry. 271 (8): 4266–72. doi:10.1074/jbc.271.8.4266. PMID 8626773.
  33. ^ Su TT, O'Farrell PH (1998). "Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Endoreplication Cycles". Journal of Cell Biology. 140 (3): 451–460. doi:10.1083/jcb.140.3.451. PMC 2140170. PMID 9456309.
  34. ^ Arias EE, Walter JC (2004). "Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells". Genes & Development. 21 (5): 497–518. doi:10.1101/gad.1508907. PMID 17344412.
  35. ^ Narbonne-Reveau K, Senger S, Pal M, Herr A, Richardson HE, Asano M, Deak P, Lilly MA (2008). "APC/CFzr/Cdh1 promotes cell cycle progression during the Drosophila endocycle". Development. 135 (8): 1451–61. doi:10.1242/dev.016295. PMID 18321983.
  36. ^ Zielke N, Querings S, Rottig C, Lehner C, Sprenger F (2008). "The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles". Genes & Development. 22 (12): 1690–1703. doi:10.1101/gad.469108. PMC 2428065. PMID 18559483.
  37. ^ Duronio RJ, O'Farrell PH (1995). "Developmental control of the G1 to S transition in Drosophila: Cyclin E is a limiting downstream target of E2F". Genes & Development. 9 (12): 1456–68. doi:10.1101/gad.9.12.1456. PMID 7601350.
  38. ^ Duronio RJ, O'Farrell PH, Xie JE, Brook A, Dyson N (1995). "The transcription factor E2F is required for S phase during Drosophila embryogenesis". Genes & Development. 9 (12): 1445–55. doi:10.1101/gad.9.12.1445. PMID 7601349.
  39. ^ Duronio RJ, Bonnette PC, O'Farrell PH (1998). "Mutations of the Drosophila dDP, dE2F, and cyclin E Genes Reveal Distinct Roles for the E2F-DP Transcription Factor and Cyclin E during the G1-S Transition". Molecular and Cellular Biology. 18 (1): 141–151. doi:10.1128/MCB.18.1.141. PMC 121467. PMID 9418862.
  40. ^ Shibutani ST, de la Cruz AF, Tran V, Turbyfill WJ, Reis T, Edgar BA, Duronio RJ (2008). "Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase". Developmental Cell. 15 (6): 890–900. doi:10.1016/j.devcel.2008.10.003. PMC 2644461. PMID 19081076.
  41. ^ Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ (2001). "Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase". Science. 294 (5540): 173–7. Bibcode:2001Sci...294..173K. doi:10.1126/science.1065203. PMID 11533444. S2CID 23404627.
  42. ^ Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK (2001). "Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer lines". Nature. 413 (6853): 311–6. doi:10.1038/35095068. PMID 11565033. S2CID 4372821.
  43. ^ de Nooij JC, Graber KH, Hariharan IK (2001). "Expression of cyclin-dependent kinase inhibitor Dacapo is regulated by cyclin E". Mechanisms of Development. 97 (1–2): 73–83. doi:10.1016/S0925-4773(00)00435-4. PMID 11025208.
  44. ^ Ullah Z, Kohn MJ, Yagi R, Vassilev LT, DePamphilis ML (2008). "Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity". Genes & Development. 22 (21): 3024–36. doi:10.1101/gad.1718108. PMC 2577795. PMID 18981479.
  45. ^ Bi K, Bogart JP (2010). "Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates". BMC Evol. Biol. 10 (1): 238. Bibcode:2010BMCEE..10..238B. doi:10.1186/1471-2148-10-238. PMC 3020632. PMID 20682056.
  46. ^ a b Bi K, Bogart JP (2010). "Probing the meiotic mechanism of intergenomic exchanges by genomic in situ hybridization on lampbrush chromosomes of unisexual Ambystoma (Amphibia: Caudata)". Chromosome Res. 18 (3): 371–82. doi:10.1007/s10577-010-9121-3. PMID 20358399. S2CID 2015354.

Read other articles:

Team of fictional comic book superheroes For the DC Comics metaseries written by Grant Morrison, see Seven Soldiers. Seven Soldiers of VictoryThe original Seven Soldiers.Publication informationPublisherDC ComicsFirst appearanceLeading Comics #1 (Winter 1941)Created byMort Weisinger (writer)Mort MeskinIn-story informationMember(s)See members The Seven Soldiers of Victory (also known as Law's Legionnaires) is a team of fictional comic book superheroes in the DC Comics universe. They first appea...

 

Austrian tram system Graz tramway networkVariobahn at Kaiser-Josef-Platz (2020)OperationLocaleGraz, Styria, AustriaStatusOperationalLines6[1]Operator(s)Holding Graz (since 2007 (2007))InfrastructureTrack gauge1,435 mm (4 ft 8+1⁄2 in) standard gaugeElectrification600 V DCStock86[2]StatisticsRoute length70.4 km (43.7 mi)[2]Stops95201253.56 million[2] Horse tram era: 1878–1899 Propulsion system(s) Horses Electric tram era...

 

Zuiltje kan verwijzen naar: Gynostemium of reproductieve zuil is een voortplantingsstructuur die voorkomt bij een aantal plantenfamilies Columella (mos) is bij mossen en bij hauwmossen de structuur van steriele cellen in het sporenkapsel, waaromheen de sporen liggen Bekijk alle artikelen waarvan de titel begint met Zuiltje of met Zuiltje in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Zuiltje inzichtelijk te maken. Op d...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) بوليز ويسنزشافت (بالألمانية: Polizeiwissenschaft) مصطلح ظهر لأول مرة في العقد الثالث من القرن الثامن عشر وبقي حتى منتص

 

Aeropuerto Internacional de Planta Metro IATA: EXT OACI: EGTE FAA: LocalizaciónUbicación East Devon, Reino UnidoElevación 31Sirve a ExeterDevonDetalles del aeropuertoTipo CivilEstadísticas (2013)Pasajeros 741.465Diferencia 12-13 5,7% Operaciones 31.458Pistas DirecciónLargoSuperficie08/262,076AsfaltoMapa EXT Posición del aeropuerto dentro de DevonSitio web www.exeter-airport.co.uk Fuente: United Kingdom AIP[1]​[editar datos en Wikidata] Un servicio de bus conecta con el G...

 

La Spezia Stad in Italië Situering Regio Ligurië Provincie La Spezia Coördinaten 44° 6′ NB, 9° 49′ OL Algemeen Oppervlakte 51 km² Inwoners (1 januari 2018) 93.311[1] (1816 inw./km²) Hoogte 0 m Overig Aangrenzende gemeenten Arcola, Follo, Lerici, Porto Venere, Riccò del Golfo di Spezia, Riomaggiore, Vezzano Ligure Beschermheilige San Giuseppe ISTAT-code 011015 Foto's La Spezia Portaal    Italië La Spezia is een stad in de regio Ligurië, in Noord-Italië,...

Parque Nacional Xuân Sơn O Parque Nacional Xuân Sơn (em vietnamita: Vườn quốc gia Xuân Sơn) é um parque nacional do distrito de Tân Sơn, província de Phú Thọ, no Vietname. Foi estabelecido em 9 de agosto de 1986 como uma reserva natural,[1] e cobre uma área de 150,48 quilómetros quadrados. Referências ↑ The Xuan Son Nature Reserve Arquivado em setembro 14, 2010, no Wayback Machine, World Database on Protected Areas

 

Dam in Kandahar Province, AfghanistanDahla DamAerial view of the Dahla Dam in 2012Location of Dahla Dam in AfghanistanLocationShah Wali Kot District, Kandahar Province, AfghanistanCoordinates31°51′20″N 65°53′33″E / 31.855544°N 65.892413°E / 31.855544; 65.892413Opening date1952Dam and spillwaysImpoundsArghandab RiverHeight55 metresLength535 metres The Dahla Dam, also known as Arghandab Dam and Kasa,[1] is located in the Shah Wali Kot District of...

 

Maldivian actress Mariyam AfeefaAfeefa attends Olympus reopening ceremony, 2023Born (1983-07-29) 29 July 1983 (age 40)Gn. FuvahmulahAlma materGn. Atoll Education CentreOccupationActressYears active2006–present Mariyam Afeefa (born 29 July 1983) is a Maldivian actress. She has established a career in Maldivian films and is the recipient of several awards, including two Gaumee Film Awards. She was featured in listings of the nation's most popular personalities. Afeefa made her ...

Waldy pada tahun 1954. Waldemar Caerel Hunter (15 Desember 1919 – 18 April 1968), dikenal dengan nama panggung S. Waldy, adalah aktor panggung dan layar lebar berdarah Indo yang aktif di perfilman Hindia Belanda dan Indonesia. Biografi Waldy lahir di Blitar, Hindia Belanda, pada 15 Desember 1919, salah satu dari empat belas anak yang lahir J.R. Hunter (juga dikenal sebagai Osman) dan L.W. Winterberg; mereka adalah keturunan Inggris dan Jerman, secara uru.[1] Keduanya adalah akt...

 

Alesha Dixon discographyStudio albums4Compilation albums1Music videos19EPs1Singles16Featured singles3Promotional singles3 Alesha Dixon, a British R&B singer, has released four studio albums, nine lead singles (not including two singles on which she is featured and three promotional singles) and thirteen music videos. Dixon was also a member of the popular music group Mis-Teeq, together with whom she released four albums and several successful singles. Dixon's discography as a solo artist ...

 

Seija MusōSampul novel ringan volume pertama聖者無双(Seija Musō)GenreIsekai, penggalan kehidupan[1] Seri novelPengarangBroccoli LionPenerbitShōsetsuka ni NarōTerbit17 Oktober 2015 – 28 Februari 2022 Novel ringanPengarangBroccoli LionIlustratorSimePenerbitMicro MagazinePenerbit bahasa InggrisNA J-Novel ClubImprintGC NovelsDemografiMaleTerbit30 Agustus 2016 – sekarangVolume10 MangaPengarangBroccoli LionIlustratorHiiro AkikazePenerbitKodanshaPenerbit bahasa InggrisNA Vertical...

Genetic testing technique Multiplex RNA visualization in cells using ViewRNA FISH Assays A metaphase cell positive for the bcr/abl rearrangement (associated with chronic myelogenous leukemia) using FISH. The chromosomes can be seen in blue. The chromosome that is labeled with green and red spots (upper left) is the one where the rearrangement is present. Fluorescence in situ hybridization (FISH) is a molecular cytogenetic technique that uses fluorescent probes that bind to only particular par...

 

Sailing ship built in 1853, wrecked in 1857 For the clipper launched 1857, see Duncan Dunbar. Hand-coloured lithograph of the Dunbar. History NameDunbar BuilderJames Laing at Sunderland, England Launched30 November 1853 FateWrecked 20 August 1857 near Sydney Heads General characteristics Class and typeBlackwall Frigate Tonnage1321 Length201.9 ft 10 in (61.79 m) Beam35 ft 6 in (10.82 m) Depth22.7 ft 10 in (7.17 m) New South Wales Heritage RegisterOf...

 

Title of Scottish nobility Earldom of ForfarRoyal Standard of Prince Edwardfor use in Scotland as Earl of ForfarCreation date10 March 2019[1]CreationSecondCreated byElizabeth IIPeeragePeerage of the United KingdomFirst holderLord Archibald DouglasPresent holderPrince Edward, Duke of EdinburghHeir apparentJames, Earl of WessexRemainder tothe 1st Earl's heirs male of the body lawfully begottenStatusExtantSeat(s)Bagshot Park Earl of Forfar is a title that has been created twice, once in ...

2012 studio album by CopywriteGod Save the KingStudio album by CopywriteReleasedFebruary 28, 2012 (2012-02-28)GenreHip hopLength68:43LabelMan Bites Dog RecordsProducerJason Rose, Bronze Nazareth, Illmind, Stu Bangas, Khrysis, S.G. on the Traxxx, Vanderslice, RJD2, Poetiq Beetz, Marco PoloCopywrite chronology The Life and Times of Peter Nelson(2010) God Save the King(2012) Blood, Bath, and Beyond(2016) Professional ratingsReview scoresSourceRatingHipHopDX[1]Potho...

 

American conservative website LifeZetteType of siteNews and opinionAvailable inEnglishFoundedOctober 2014Headquarters1055 Thomas Jefferson Street, Suite 301Washington, DC 20007[1]United States, United StatesOwnerKatz Group of Companies and Laura IngrahamFounder(s)Laura IngrahamPeter AnthonyKey peopleLaura Ingraham (Editor-in-chief)URLLifeZette.comAdvertisingNativeRegistrationOptional, but is required to commentLaunchedJuly 2015Current statusOnline This article is part o...

 

Historic house in South Carolina, United States United States historic placeBush HouseU.S. National Register of Historic Places Bush House, August 2012Show map of South CarolinaShow map of the United StatesLocation3960 New Cut Road,near Inman, South CarolinaCoordinates35°01′25″N 82°04′26″W / 35.02361°N 82.07389°W / 35.02361; -82.07389Area6.64 acres (2.69 ha)Builtc. 1830 (1830), c. 1850Built byBush, Story; Bush, B.F.Architectural styleI-HouseN...

For other uses, see Ironman. Series of long-distance triathlon races Ironman TriathlonLogo An Ironman Triathlon is one of a series of long-distance triathlon races organized by the World Triathlon Corporation (WTC), consisting of a 2.4-mile (3.9 km) swim, a 112-mile (180.2 km) bicycle ride and a marathon 26.22-mile (42.2 km) run completed in that order, a total of 140.6 miles (226.3 km). It is widely considered one of the most difficult one-day sporting events in the world...

 

Crypto AG Тип частная компания Основание 1952[1] Предшественник AB Cryptograph[sv] Упразднена 2018[1] Преемник Crypto International AG, CyOne[2] Основатели Борис Хагелин[1] Расположение  Швейцария, кантон Цуг, Штайнхаузен[1] Отрасль информационные технологии (МСОК: 62) Продукци...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!