Elementary matrix

In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix. The elementary matrices generate the general linear group GLn(F) when F is a field. Left multiplication (pre-multiplication) by an elementary matrix represents elementary row operations, while right multiplication (post-multiplication) represents elementary column operations.

Elementary row operations are used in Gaussian elimination to reduce a matrix to row echelon form. They are also used in Gauss–Jordan elimination to further reduce the matrix to reduced row echelon form.

Elementary row operations

There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):

Row switching
A row within the matrix can be switched with another row.
Row multiplication
Each element in a row can be multiplied by a non-zero constant. It is also known as scaling a row.
Row addition
A row can be replaced by the sum of that row and a multiple of another row.

If E is an elementary matrix, as described below, to apply the elementary row operation to a matrix A, one multiplies A by the elementary matrix on the left, EA. The elementary matrix for any row operation is obtained by executing the operation on the identity matrix. This fact can be understood as an instance of the Yoneda lemma applied to the category of matrices.[1]

Row-switching transformations

The first type of row operation on a matrix A switches all matrix elements on row i with their counterparts on a different row j. The corresponding elementary matrix is obtained by swapping row i and row j of the identity matrix.

So Ti,j A is the matrix produced by exchanging row i and row j of A.

Coefficient wise, the matrix Ti,j is defined by :

Properties

  • The inverse of this matrix is itself:
  • Since the determinant of the identity matrix is unity, It follows that for any square matrix A (of the correct size), we have
  • For theoretical considerations, the row-switching transformation can be obtained from row-addition and row-multiplication transformations introduced below because

Row-multiplying transformations

The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the ith position, where it is m.

So Di(m)A is the matrix produced from A by multiplying row i by m.

Coefficient wise, the Di(m) matrix is defined by :

Properties

  • The inverse of this matrix is given by
  • The matrix and its inverse are diagonal matrices.
  • Therefore, for a square matrix A (of the correct size), we have

Row-addition transformations

The final type of row operation on a matrix A adds row j multiplied by a scalar m to row i. The corresponding elementary matrix is the identity matrix but with an m in the (i, j) position.

So Lij(m)A is the matrix produced from A by adding m times row j to row i. And A Lij(m) is the matrix produced from A by adding m times column i to column j.

Coefficient wise, the matrix Li,j(m) is defined by :

Properties

  • These transformations are a kind of shear mapping, also known as a transvections.
  • The inverse of this matrix is given by
  • The matrix and its inverse are triangular matrices.
  • Therefore, for a square matrix A (of the correct size) we have
  • Row-addition transforms satisfy the Steinberg relations.

See also

References

  1. ^ Perrone (2024), pp. 119–120
  • Axler, Sheldon Jay (1997), Linear Algebra Done Right (2nd ed.), Springer-Verlag, ISBN 0-387-98259-0
  • Lay, David C. (August 22, 2005), Linear Algebra and Its Applications (3rd ed.), Addison Wesley, ISBN 978-0-321-28713-7
  • Meyer, Carl D. (February 15, 2001), Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), ISBN 978-0-89871-454-8, archived from the original on 2009-10-31
  • Perrone, Paolo (2024), Starting Category Theory, World Scientific, doi:10.1142/9789811286018_0005, ISBN 978-981-12-8600-1
  • Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Brooks/Cole, ISBN 0-534-99845-3
  • Anton, Howard (2005), Elementary Linear Algebra (Applications Version) (9th ed.), Wiley International
  • Leon, Steven J. (2006), Linear Algebra With Applications (7th ed.), Pearson Prentice Hall
  • Strang, Gilbert (2016), Introduction to Linear Algebra (5th ed.), Wellesley-Cambridge Press, ISBN 978-09802327-7-6

Read other articles:

بيتر زومثور (بالألمانية: ......)‏  Therme Vals, Switzerland معلومات شخصية الميلاد 26 أبريل 1943 (العمر 80 سنة)بازل، سويسرا الجنسية سويسري عضو في أكاديمية الفنون في برلين  [لغات أخرى]‏،  والأكاديمية الملكية للفنون،  والأكاديمية الأمريكية للفنون والعلوم  عدد الأولاد 3   الحي

 

たまきちょう 玉城町 田丸城跡 玉城町旗 玉城町章1965年5月6日制定[1] 国 日本地方 東海地方、近畿地方都道府県 三重県郡 度会郡市町村コード 24461-9法人番号 8000020244619 面積 40.91km2総人口 14,714人 [編集](推計人口、2023年10月1日)人口密度 360人/km2隣接自治体 伊勢市、度会郡度会町、多気町、明和町町の木 マキ町の花 サクラ玉城町役場町長 [編集]辻村修一所在地 ...

 

Tontowi AhmadInformasi pribadiNama lahirTontowi AhmadKebangsaanIndonesiaLahir18 Juli 1987 (umur 36)Selandaka, Sumpiuh, Banyumas, IndonesiaTinggi183 cm (6 ft 0 in)PeganganKananPelatihRichard MainakyPasanganMichelle Nabila HarmincGanda CampuranPeringkat tertinggi1 bersama Lilyana Natsir (27 April 2018)Peringkat saat ini68 bersama Winny Oktavina Kandow (3 April 2019) Tontowi Ahmad Rekam medali Mewakili  Indonesia Olimpiade 2016 Rio de Janeiro Ganda Campuran Kej...

St.-Christophorus-Kirche (2013) Sankt Christophorus war die katholische Kirche in Stöcken, einem Stadtteil von Hannover (Niedersachsen). Die nach dem heiligen Christophorus benannte Kirche gehörte zuletzt zur Pfarrgemeinde St. Maria im Dekanat Hannover des Bistums Hildesheim. Standort des 2019 abgerissenen Kirchengebäudes war die Moosbergstraße 4[1] am Stöckener Markt. Inhaltsverzeichnis 1 Geschichte 2 Architektur und Ausstattung 3 Weitere katholische Einrichtungen in Stöcken 4 ...

 

Grupo alternate En teoría de grupos, el grupo alternante, también conocido como grupo alternado o subgrupo alternado, denotado usualmente A n {\displaystyle A_{n}} , es el subgrupo del grupo simétrico S n {\displaystyle S_{n}} del conjunto { 1 , 2 , … , n } {\displaystyle \{1,2,\dots ,n\}} formado por las permutaciones pares.[1]​ Simbólicamente: A n = { σ ∈ S n : σ  es par } = ker ⁡ ( ε ) , {\displaystyle A_{n}=\{\sigma \in S_{n}:\sigma...

 

село Нова Волярка Країна  Україна Область Одеська область Район  Подільський район Громада Окнянська селищна громада Код КАТОТТГ UA51120150260076378 Основні дані Засноване 1771 Населення 6 Площа 0,35 км² Густота населення 17,14 осіб/км² Поштовий індекс 67902 Телефонний код +380 4...

Charles Eliot Norton Charles Eliot Norton a los 76 años de edadInformación personalNacimiento 16 de noviembre de 1827Cambridge, MassachusettsFallecimiento 21 de octubre de 1908Cambridge, MassachusettsSepultura Cementerio Monte Auburn Residencia Estados Unidos de AméricaNacionalidad EstadounidenseFamiliaPadres Andrews Norton Catherine Eliot Cónyuge Susan SedgwickEducaciónEducado en Universidad de Harvard Información profesionalÁrea Historia del arteConocido por Profesor de Historia...

 

  برايلا (بالرومانية: Brăila)‏    برايلا  خريطة الموقع تقسيم إداري البلد مملكة رومانيا (10 مايو 1866–30 ديسمبر 1947) الأفلاق  [لغات أخرى]‏ (–1554) الأفلاق  [لغات أخرى]‏ (2 سبتمبر 1829–23 يناير 1859) الدولة العثمانية (1554–2 سبتمبر 1829) الممالك المتحدة (24 يناير 1859–9 مايو 18...

 

Soedarpo SastrosatomoInformasi pribadiLahir(1920-06-30)30 Juni 1920 Pangkalan Susu, Langkat, Sumatera Utara, Hindia BelandaMeninggal22 Oktober 2007(2007-10-22) (umur 87)Jakarta, IndonesiaSuami/istriMinarsih WiranatakusumahAnakShanti Lasminingsih Poesposoetjipto, Ratna Djuwita Tunggul Hatma, Chandraleika MuliaTempat tinggalJalan Pegangsaan Barat Nomor 16, Menteng, Jakarta Pusat, DKI JakartaAlma materIka Daigaku, tidak selesaiPekerjaanPengusahaDikenal karenaPendiri Bank NiagaSunting kotak ...

Ukrainian high jumper In this name that follows Eastern Slavic naming conventions, the patronymic is Viktorovych and the family name is Bondarenko. Bohdan BondarenkoBondarenko on the 2013 World Championships in AthleticsPersonal informationNative nameБогдан Вікторович Бондаренко[1]Full nameBohdan Viktorovych Bondarenko[1]Born (1989-08-30) 30 August 1989 (age 34)[1]Kharkiv, Ukrainian SSR, Soviet Union[1]Height1.98...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Let Me In The Sensations song – news · newspapers · books · scholar · JSTOR (August 2017) (Learn how and when to remove this template message) 1961 single by The SensationsLet Me InSingle by The Sensationsfrom the album Let Me In B-sideOh Yes I'll Be TrueR...

 

Firearm trace request submission system This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) Some of this article's listed sources may not be reliable. Please help this article by looking for better, more reliable sources. Unreliable citations may be challenged or deleted. (November 2011) (Learn how and when to remove this template message) This article may contain excessive or inappropriate r...

2013 studio album by ShineeThe Misconceptions of UsStudio album by ShineeReleasedAugust 8, 2013GenreK-popLength72:32LanguageKoreanLabel SM KT Music Producer Thomas Troelsen Pegasus Hyuk Shin Jordan Kyle Ross Lara TC Spitfire Hitchhiker Herbie Crichlow Lucas Secon Remee Hwang Hyun Teddy Riley DOM Kim Tae-sung Andrew Choi Richard Garcia Static Revenger Hitchhiker Kenzie Ghostkick Red Rocket Iain James Farquharson Christopher Lee-Joe Amanshia Nunoo Dwayne Fyne Ryan S. Jhun Fridolin Nords...

 

ピーター・グロソップPeter Glossop 基本情報出生名 Peter Glossop生誕 (1928-07-06) 1928年7月6日 イギリス シェフィールド近郊ワズリー出身地 イギリス死没 (2008-09-07) 2008年9月7日(80歳没) イギリス デヴォン州クレイハンガージャンル オペラ職業 歌手活動期間 1953年 - 1986年 ピーター・グロソップ(Peter Glossop, 1928年7月6日 - 2008年9月7日)は、イギリスのバリトン歌手。 ミラノ・ス...

 

Fictional character on Desperate Housewives Soap opera character Lynette ScavoDesperate Housewives characterPortrayed byFelicity HuffmanDuration2004–2012First appearancePilot1x01, October 3, 2004Last appearanceFinishing the Hat8x23, May 13, 2012Created byMarc CherrySpin-offappearancesDesperate Housewives: The Game (2006)In-universe informationOther namesLynette Lindquist (maiden name)Lynnie (by her mother)OccupationCEO[1]FormerInterior designerRestaurant ManagerV...

Comune in Umbria, ItalyMonte Castello di VibioComuneComune di Monte Castello di Vibio Coat of armsLocation of Monte Castello di Vibio Monte Castello di VibioLocation of Monte Castello di Vibio in ItalyShow map of ItalyMonte Castello di VibioMonte Castello di Vibio (Umbria)Show map of UmbriaCoordinates: 42°50′N 12°21′E / 42.833°N 12.350°E / 42.833; 12.350CountryItalyRegionUmbriaProvincePerugia (PG)FrazioniDoglio, Madonna del PianoGovernment • May...

 

Pulau Bely, Laut Kara Pulau Bely (juga dieja Belyy dan Beliy, bahasa Rusia: Белый остров) adalah pulau di Laut Kara, Siberia, Rusia. Pulau Bely terdiri dari wilayah seluas 1.810 km² yang dilapisi oleh tundra. Pranala luar Photograph of polar station Diarsipkan 2006-10-07 di Wayback Machine. 73°15′N 70°50′E / 73.250°N 70.833°E / 73.250; 70.833 Artikel bertopik geografi atau tempat Rusia ini adalah sebuah rintisan. Anda dapat membantu Wikiped...

 

Japanese video game developer For other uses, see Omega Force (disambiguation). Omega ForceNative nameオメガフォースTypeDivisionIndustryVideo gamesFounded1996; 27 years ago (1996)FounderAkihiro SuzukiKenichi OgasawaraHeadquartersAshikaga, Tochigi, JapanKey peopleTomohiko Sho (president)[1]ProductsDynasty Warriors series Samurai Warriors series One Piece: Pirate Warriors seriesParentKoei (1996–2010)Koei Tecmo (2010–present) Omega Force (Japanese: オメガ...

Theological University of ApeldoornTypeSeminaryEstablished1894LocationApeldoorn, The NetherlandsThis article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Theological University of Apeldoorn – news · newspapers · books · scholar · JSTOR (October 2017) (Learn how and when to remove this template message) The Theological University of Apeldoorn (TUA) is the Dutch th...

 

1956 British crime film The Gelignite GangAmerican release posterDirected byTerence Fisher Francis SearleWritten byBrandon FlemingStory byBrandon FlemingProduced byBrandon FlemingGeoffrey GoodhartStarringWayne MorrisSandra DorneCinematographyCedric WilliamsEdited byDouglas MyersMusic byJerry LevyProductioncompanyCybex Film ProductionsDistributed byRenown Pictures (UK) Astor Pictures (US)Release date March 1956 (1956-03) (UK) Running time74 minutesCountryUnited KingdomLanguageEng...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!