Dirichlet's unit theorem

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet.[1] It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

The statement is that the group of units is finitely generated and has rank (maximal number of multiplicatively independent elements) equal to

r = r1 + r2 − 1

where r1 is the number of real embeddings and r2 the number of conjugate pairs of complex embeddings of K. This characterisation of r1 and r2 is based on the idea that there will be as many ways to embed K in the complex number field as the degree ; these will either be into the real numbers, or pairs of embeddings related by complex conjugation, so that

n = r1 + 2r2.

Note that if K is Galois over then either r1 = 0 or r2 = 0.

Other ways of determining r1 and r2 are

  • use the primitive element theorem to write , and then r1 is the number of conjugates of α that are real, 2r2 the number that are complex; in other words, if f is the minimal polynomial of α over , then r1 is the number of real roots and 2r2 is the number of non-real complex roots of f (which come in complex conjugate pairs);
  • write the tensor product of fields as a product of fields, there being r1 copies of and r2 copies of .

As an example, if K is a quadratic field, the rank is 1 if it is a real quadratic field, and 0 if an imaginary quadratic field. The theory for real quadratic fields is essentially the theory of Pell's equation.

The rank is positive for all number fields besides and imaginary quadratic fields, which have rank 0. The 'size' of the units is measured in general by a determinant called the regulator. In principle a basis for the units can be effectively computed; in practice the calculations are quite involved when n is large.

The torsion in the group of units is the set of all roots of unity of K, which form a finite cyclic group. For a number field with at least one real embedding the torsion must therefore be only {1,−1}. There are number fields, for example most imaginary quadratic fields, having no real embeddings which also have {1,−1} for the torsion of its unit group.

Totally real fields are special with respect to units. If L/K is a finite extension of number fields with degree greater than 1 and the units groups for the integers of L and K have the same rank then K is totally real and L is a totally complex quadratic extension. The converse holds too. (An example is K equal to the rationals and L equal to an imaginary quadratic field; both have unit rank 0.)

The theorem not only applies to the maximal order OK but to any order OOK.[2]

There is a generalisation of the unit theorem by Helmut Hasse (and later Claude Chevalley) to describe the structure of the group of S-units, determining the rank of the unit group in localizations of rings of integers. Also, the Galois module structure of has been determined.[3]

The regulator

Suppose that K is a number field and are a set of generators for the unit group of K modulo roots of unity. There will be r + 1 Archimedean places of K, either real or complex. For , write for the different embeddings into or and set Nj to 1 or 2 if the corresponding embedding is real or complex respectively. Then the r × (r + 1) matrixhas the property that the sum of any row is zero (because all units have norm 1, and the log of the norm is the sum of the entries in a row). This implies that the absolute value R of the determinant of the submatrix formed by deleting one column is independent of the column. The number R is called the regulator of the algebraic number field (it does not depend on the choice of generators ui). It measures the "density" of the units: if the regulator is small, this means that there are "lots" of units.

The regulator has the following geometric interpretation. The map taking a unit u to the vector with entries has an image in the r-dimensional subspace of consisting of all vectors whose entries have sum 0, and by Dirichlet's unit theorem the image is a lattice in this subspace. The volume of a fundamental domain of this lattice is .

The regulator of an algebraic number field of degree greater than 2 is usually quite cumbersome to calculate, though there are now computer algebra packages that can do it in many cases. It is usually much easier to calculate the product hR of the class number h and the regulator using the class number formula, and the main difficulty in calculating the class number of an algebraic number field is usually the calculation of the regulator.

Examples

A fundamental domain in logarithmic space of the group of units of the cyclic cubic field K obtained by adjoining to a root of f(x) = x3 + x2 − 2x − 1. If α denotes a root of f(x), then a set of fundamental units is {ε1, ε2}, where ε1 = α2 + α − 1 and ε2 = 2 − α2. The area of the fundamental domain is approximately 0.910114, so the regulator of K is approximately 0.525455.
  • The regulator of an imaginary quadratic field, or of the rational integers, is 1 (as the determinant of a 0 × 0 matrix is 1).
  • The regulator of a real quadratic field is the logarithm of its fundamental unit: for example, that of is . This can be seen as follows. A fundamental unit is , and its images under the two embeddings into are and . So the r × (r + 1) matrix is
  • The regulator of the cyclic cubic field , where α is a root of x3 + x2 − 2x − 1, is approximately 0.5255. A basis of the group of units modulo roots of unity is {ε1, ε2} where ε1 = α2 + α − 1 and ε2 = 2 − α2.[4]

Higher regulators

A 'higher' regulator refers to a construction for a function on an algebraic K-group with index n > 1 that plays the same role as the classical regulator does for the group of units, which is a group K1. A theory of such regulators has been in development, with work of Armand Borel and others. Such higher regulators play a role, for example, in the Beilinson conjectures, and are expected to occur in evaluations of certain L-functions at integer values of the argument.[5] See also Beilinson regulator.

Stark regulator

The formulation of Stark's conjectures led Harold Stark to define what is now called the Stark regulator, similar to the classical regulator as a determinant of logarithms of units, attached to any Artin representation.[6][7]

p-adic regulator

Let K be a number field and for each prime P of K above some fixed rational prime p, let UP denote the local units at P and let U1,P denote the subgroup of principal units in UP. Set

Then let E1 denote the set of global units ε that map to U1 via the diagonal embedding of the global units in E.

Since E1 is a finite-index subgroup of the global units, it is an abelian group of rank r1 + r2 − 1. The p-adic regulator is the determinant of the matrix formed by the p-adic logarithms of the generators of this group. Leopoldt's conjecture states that this determinant is non-zero.[8][9]

See also

Notes

  1. ^ Elstrodt 2007, §8.D
  2. ^ Stevenhagen, P. (2012). Number Rings (PDF). p. 57.
  3. ^ Neukirch, Schmidt & Wingberg 2000, proposition VIII.8.6.11.
  4. ^ Cohen 1993, Table B.4
  5. ^ Bloch, Spencer J. (2000). Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. CRM Monograph Series. Vol. 11. Providence, RI: American Mathematical Society. ISBN 0-8218-2114-8. Zbl 0958.19001.
  6. ^ Prasad, Dipendra; Yogonanda, C. S. (2007-02-23). A Report on Artin's holomorphy conjecture (PDF) (Report).
  7. ^ Dasgupta, Samit (1999). Stark's Conjectures (PDF) (Thesis). Archived from the original (PDF) on 2008-05-10.
  8. ^ Neukirch et al. (2008) p. 626–627
  9. ^ Iwasawa, Kenkichi (1972). Lectures on p-adic L-functions. Annals of Mathematics Studies. Vol. 74. Princeton, NJ: Princeton University Press and University of Tokyo Press. pp. 36–42. ISBN 0-691-08112-3. Zbl 0236.12001.

References

Read other articles:

Фестиваль в Будапеште Второй международный фестиваль молодёжи и студентов — фестиваль студенчества и молодёжи планеты проходивший в 1949 году в Будапеште, столице социалистической Венгрии. Делегация Индонезии на II Всемирном фестивале молодёжи и студентов Открывшись...

 

 

دالة الشغل في الكيمياء والفيزياء (بالإنجليزية: work function)‏ هي أقل طاقة يحتاجها الألكترون لكي يُنتزع من سطح مادة صلبة . ويعني هنا مجرد انتزاع إلكترون ليصبح بعيدا عن باقي الذرات ولكنه يبقى على مقربة من السطح . تشكل دالة الطاقة هذه إحدى الخواص النوعية للمادة .[1] تتسم المادة ا...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) دان ستيوارت   معلومات شخصية الميلاد 5 مارس 1961 (62 سنة)  لوس أنجلوس  مواطنة الولايات المتحدة  الحياة العملية المهنة مغني،  ومغن مؤلف،  وعازف قيثار...

Sampul Have a Nice Day adalah album Roxette, diterbitkan pada Maret 1999. Daftar lagu Crush On You (Per Gessle) Wish I Could Fly (Gessle) 1st single You Can't Put Your Arms Around What's Already Gone (Gessle) Waiting For The Rain (Marie Fredriksson) Anyone (Gessle) 2nd single It Will Take A Long Long Time (Gessle) 7Twenty7 (Gessle) I Was So Lucky (Gessle) Stars (Gessle) 3rd single Salvation (Gessle) 4 single Pay The Price (Gessle) 2nd single in japan Cooper (Gessle) Staring At The Ground (Ges...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

和歌山県立串本高等学校 北緯33度27分44秒 東経135度46分45秒 / 北緯33.46225度 東経135.77928度 / 33.46225; 135.77928座標: 北緯33度27分44秒 東経135度46分45秒 / 北緯33.46225度 東経135.77928度 / 33.46225; 135.77928過去の名称 串本町立串本実業学校串本町立串本商業学校和歌山県立串本商業学校国公私立の別 公立学校設置者  和歌山県学区 全県一学区設立年

1520 rebellion in Spain For other revolts by this name, see Comunero (disambiguation). Revolt of the ComunerosExecution of the Comuneros of Castile, by Antonio Gisbert (1860)DateApril 16, 1520 – October 25, 15211LocationCrown of CastileResult Royalist victoryBelligerents Comuneros rebels Royalist CastiliansCommanders and leaders Juan López de Padilla Juan Bravo Francisco Maldonado María PachecoAntonio de Acuña  Pedro Girón Charles V, Holy Roman EmperorAdrian of ...

 

 

Physical law: force needed to deform a spring scales linearly with distance Hooke's law: the force is proportional to the extension Bourdon tubes are based on Hooke's law. The force created by gas pressure inside the coiled metal tube above unwinds it by an amount proportional to the pressure. The balance wheel at the core of many mechanical clocks and watches depends on Hooke's law. Since the torque generated by the coiled spring is proportional to the angle turned by the wheel, its oscillat...

 

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2012) (Learn how and when to remove this template message) No. 400 Tactical Helicopter SquadronNo. 400 Squadron RCAF badgeActive5 October 1932 – 7 August 194515 April 1946 – PresentCountry CanadaBranch Royal Canadian Air ForceRoleCH-146 2nd maintenance lineMotto(s)Latin: Percussuri Vigiles(On t...

Sporting event delegationChina at the2022 Asian GamesIOC codeCHNNOCChinese Olympic Committeeexternal link (in Chinese and English)in Hangzhou, China23 September 2023 (2023-09-23) – 8 October 2023 (2023-10-08)Competitors886 (449 men and 437 women)Flag bearers (opening)Yang Liwei (basketball) Qin Haiyang (Swimming)Flag bearer (closing)Xie ZhenyeMedalsRanked 1st Gold 201 Silver 111 Bronze 71 Total 383 Asian Games appearances (overview)1974...

 

 

Óxido de sódioAlerta sobre risco à saúde Nome IUPAC Óxido de sódio Identificadores Número CAS 1313-59-3 Propriedades Fórmula molecular Na2O Massa molar 61.979 Aparência sólido de cor branca Densidade 2.27 g/cm3 Ponto de fusão 1132 °C Ponto de ebulição decompõem-se a 1950 °C Solubilidade em água reage para formar hidróxido de sódio Solubilidade em outros solventes insolubilidade Estrutura Estrutura cristalina cúbico Geometria decoordenação 8 Riscos associados Classificaç...

 

 

Indonesian military officer and politician (1938–2023) T. B. SilalahiSilalahi in 1993Minister of Public ServantsIn office17 March 1993 – 14 March 1998Preceded bySarwono Kusumaatmadja [id]Succeeded byHartarto Sastrosoenarto [id] Personal detailsBornTiopan Bernhard Silalahi(1938-04-17)17 April 1938Pematangsiantar, Dutch East IndiesDied13 November 2023(2023-11-13) (aged 85)Jakarta, IndonesiaNationalityIndonesianPolitical partyDemocraticEducationPadjadj...

Rudolf Alberth RodjaDeputi Bidang Koordinasi Keamanan dan Ketertiban Masyarakat Kemenko PolhukamPetahanaMulai menjabat 2 Maret 2023Kepala Kepolisian Daerah PapuaMasa jabatan26 April 2019 – 27 September 2019PendahuluMartuani SorminPenggantiPaulus WaterpauwKepala Kepolisian Daerah Papua BaratMasa jabatan20 Juli 2017 – 26 April 2019PendahuluMartuani SorminPenggantiHerry Rudolf NahakKaroprovos Divpropam PolriMasa jabatan14 November 2016 – 20 Juli 2017Pendahulu...

 

 

SCIndeks - Serbian Citation IndexProducerCentre for Evaluation in Education and Science (Serbia)LanguagesSerbian, EnglishAccessCostFreeCoverageDisciplinesScience, social science, arts, humanitiesRecord depthCitation indexing, author, topic title, subject keywords, abstract, periodical title, author's address, publication year, full textFormat coverageAcademic journal articlesTemporal coverage1991 to presentGeospatial coverageSerbiaNo. of records80,000 + indexed articles and more than one mill...

 

 

Metropolitan area in PhilippinesMetro Baguio BLISTTMetropolitan areaSkyline of Baguio City at nightBaguio and neighboring towns which is regarded as part of Metro Baguio.CountryPhilippinesRegionCordillera Administrative Region(CAR)ProvinceBenguetEstablishedApril 11, 2004Metropolitan CenterBaguioCity/Municipality List BaguioLa TrinidadItogonSablanTubaTublay Government[1] • TypeCouncil • ChairmanBenjamin Magalong(mayor of Baguio) • Co-ChairmanArthur B...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Great Astrolabe Reef – news · newspapers · books · scholar · JSTOR (April 2010) (Learn how and when to remove this template message) Great Astrolabe Reef The Great Astrolabe Reef is in Fiji and surrounds the fourth largest island, Kadavu Island, which is approx...

 

 

601st Tank Destroyer BattalionActive15 December 1941 – 1945Disbanded1945. Reorganized as 332nd Heavy Tank BattalionCountry United StatesAllegiance United States ArmyPart ofIndependent unitEquipmentM6 FargoM3 Gun Motor CarriageM10 tank destroyerM36 tank destroyerEngagementsWorld War II Torch Avalanche Shingle Dragoon Tunisia Campaign DecorationsPresidential Unit Citation (2)Military unit The 601st Tank Destroyer Battalion was a battalion of the United States Army active during...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Malawa, Niger – news · newspapers · books · scholar · JSTOR (September 2010) Commune and village in Zinder, NigerMalawa, NigerCommune and villageCountry NigerRegionZinderDepartmentDungassTime zoneUTC+1 (WAT) Malawa, Niger is a village and rural c...

See also: Timeline of the Napoleonic era and First French Empire This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Napoleonic era – news · newspapers · books · scholar · JSTOR (March 2023) (Learn how and when to remove this template message) European history in the 1800s Napoleonic era1799–1815The Emperor Na...

 

 

  Agujeta asiática En Dayuan, condado de Taoyuan, TaiwánEstado de conservaciónCasi amenazado (UICN 3.1)[1]​TaxonomíaReino: AnimaliaFilo: ChordataClase: AvesOrden: CharadriiformesFamilia: ScolopacidaeGénero: LimnodromusEspecie: L. semipalmatus(Blyth, 1848)[editar datos en Wikidata] La agujeta o aguja asiática (Limnodromus semipalmatus)[2]​[3]​ es una especie de ave caradriforme de la familia Scolopacidae. Descripción Los adultos tienen patas oscuras...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!