Differential structure

In mathematics, an n-dimensional differential structure (or differentiable structure) on a set M makes M into an n-dimensional differential manifold, which is a topological manifold with some additional structure that allows for differential calculus on the manifold. If M is already a topological manifold, it is required that the new topology be identical to the existing one.

Definition

For a natural number n and some k which may be a non-negative integer or infinity, an n-dimensional Ck differential structure[1] is defined using a Ck-atlas, which is a set of bijections called charts between subsets of M (whose union is the whole of M) and open subsets of :

which are Ck-compatible (in the sense defined below):

Each chart allows a subset of the manifold to be viewed as an open subset of , but the usefulness of this depends on how much the charts agree when their domains overlap.

Consider two charts:

The intersection of their domains is

whose images under the two charts are

The transition map between the two charts translates between their images on their shared domain:

Two charts are Ck-compatible if

are open, and the transition maps

have continuous partial derivatives of order k. If k = 0, we only require that the transition maps are continuous, consequently a C0-atlas is simply another way to define a topological manifold. If k = ∞, derivatives of all orders must be continuous. A family of Ck-compatible charts covering the whole manifold is a Ck-atlas defining a Ck differential manifold. Two atlases are Ck-equivalent if the union of their sets of charts forms a Ck-atlas. In particular, a Ck-atlas that is C0-compatible with a C0-atlas that defines a topological manifold is said to determine a Ck differential structure on the topological manifold. The Ck equivalence classes of such atlases are the distinct Ck differential structures of the manifold. Each distinct differential structure is determined by a unique maximal atlas, which is simply the union of all atlases in the equivalence class.

For simplification of language, without any loss of precision, one might just call a maximal Ck−atlas on a given set a Ck−manifold. This maximal atlas then uniquely determines both the topology and the underlying set, the latter being the union of the domains of all charts, and the former having the set of all these domains as a basis.

Existence and uniqueness theorems

For any integer k > 0 and any n−dimensional Ck−manifold, the maximal atlas contains a C−atlas on the same underlying set by a theorem due to Hassler Whitney. It has also been shown that any maximal Ck−atlas contains some number of distinct maximal C−atlases whenever n > 0, although for any pair of these distinct C−atlases there exists a C−diffeomorphism identifying the two. It follows that there is only one class of smooth structures (modulo pairwise smooth diffeomorphism) over any topological manifold which admits a differentiable structure, i.e. The C−, structures in a Ck−manifold. A bit loosely, one might express this by saying that the smooth structure is (essentially) unique. The case for k = 0 is different. Namely, there exist topological manifolds which admit no C1−structure, a result proved by Kervaire (1960),[2] and later explained in the context of Donaldson's theorem (compare Hilbert's fifth problem).

Smooth structures on an orientable manifold are usually counted modulo orientation-preserving smooth homeomorphisms. There then arises the question whether orientation-reversing diffeomorphisms exist. There is an "essentially unique" smooth structure for any topological manifold of dimension smaller than 4. For compact manifolds of dimension greater than 4, there is a finite number of "smooth types", i.e. equivalence classes of pairwise smoothly diffeomorphic smooth structures. In the case of Rn with n ≠ 4, the number of these types is one, whereas for n = 4, there are uncountably many such types. One refers to these by exotic R4.

Differential structures on spheres of dimension 1 to 20

The following table lists the number of smooth types of the topological m−sphere Sm for the values of the dimension m from 1 up to 20. Spheres with a smooth, i.e. C−differential structure not smoothly diffeomorphic to the usual one are known as exotic spheres.

Dimension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Smooth types 1 1 1 ≥1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16 523264 24

It is not currently known how many smooth types the topological 4-sphere S4 has, except that there is at least one. There may be one, a finite number, or an infinite number. The claim that there is just one is known as the smooth Poincaré conjecture (see Generalized Poincaré conjecture). Most mathematicians believe that this conjecture is false, i.e. that S4 has more than one smooth type. The problem is connected with the existence of more than one smooth type of the topological 4-disk (or 4-ball).

Differential structures on topological manifolds

As mentioned above, in dimensions smaller than 4, there is only one differential structure for each topological manifold. That was proved by Tibor Radó for dimension 1 and 2, and by Edwin E. Moise in dimension 3.[3] By using obstruction theory, Robion Kirby and Laurent C. Siebenmann were able to show that the number of PL structures for compact topological manifolds of dimension greater than 4 is finite.[4] John Milnor, Michel Kervaire, and Morris Hirsch proved that the number of smooth structures on a compact PL manifold is finite and agrees with the number of differential structures on the sphere for the same dimension (see the book Asselmeyer-Maluga, Brans chapter 7) . By combining these results, the number of smooth structures on a compact topological manifold of dimension not equal to 4 is finite.

Dimension 4 is more complicated. For compact manifolds, results depend on the complexity of the manifold as measured by the second Betti number b2. For large Betti numbers b2 > 18 in a simply connected 4-manifold, one can use a surgery along a knot or link to produce a new differential structure. With the help of this procedure one can produce countably infinite many differential structures. But even for simple spaces such as one doesn't know the construction of other differential structures. For non-compact 4-manifolds there are many examples like having uncountably many differential structures.

See also

References

  1. ^ Hirsch, Morris, Differential Topology, Springer (1997), ISBN 0-387-90148-5. for a general mathematical account of differential structures
  2. ^ Kervaire, Michel (1960). "A manifold which does not admit any differentiable structure". Commentarii Mathematici Helvetici. 34: 257–270. doi:10.1007/BF02565940.
  3. ^ Moise, Edwin E. (1952). "Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung". Annals of Mathematics. Second Series. 56 (1): 96–114. doi:10.2307/1969769. JSTOR 1969769. MR 0048805.
  4. ^ Kirby, Robion C.; Siebenmann, Laurence C. (1977). Foundational Essays on Topological Manifolds. Smoothings, and Triangulations. Princeton, New Jersey: Princeton University Press. ISBN 0-691-08190-5.

Read other articles:

Oblys de Karaganda (kk) : Қарағанды облысы(Qaraghandy oblysy)(ru) : Карагандинская область(Karagandinskaïa oblast') Administration Pays Kazakhstan Type Oblys Centre administratif Karaganda Démographie Population 1 363 638 hab. (2013[1]) Densité 3,2 hab./km2 Géographie Superficie 428 000 km2 modifier  L'oblys de Karaganda (en kazakh : Қарағанды облысы) est la plus grande...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. L'admissibilité de cette page est à vérifier (octobre 2023). Motif : aucune source centrée à part le site web de l'association et une autre source. Et puis, ces cérémonies sont-elles aussi connues que ça, et faut-il faire une page pour chacune d'elles ? Vous êtes invité à compléter l'article pour expliciter son admissibilité, en y apportant des sources secondaires de qualité, ainsi qu'à e...

 

Untuk kegunaan lain, lihat Get Married (disambiguasi). 99% Muhrim: Get Married 5Poster filmSutradara Fajar Bustomi Produser Chand Parwez Servia Fiaz Servia Ditulis oleh Cassandra Massardi PemeranNirina ZubirNino FernandezAnggika BolsterliAmingFathir MuchtarHadijah Shahab Farras FatikIra WibowoJaja MihardjaMeriam BellinaRicky HarunAngel ChiBiGofar HilmanNaratorArie DagienkzPenata musikSlankPerusahaanproduksiKharisma Starvision PlusTanggal rilis31 Juli 2015 (2015-07-31)Durasi100-meni...

Вважається, що всього під час радянсько-афганської війни загинуло 2378 українців[1]. Однак вихідців з теренів України та тих, хто спочиває в українській землі, дещо більше. Так, за даними книги «Чорні тюльпани. Афганський мартиролог України»[2], цифра зростає до 3087. Рег

 

Embassy of Iceland in LondonLocationKnightsbridge, LondonAddress2A Hans Street, London, SW1X 0JECoordinates51°29′52″N 0°09′34″W / 51.4978°N 0.1594°W / 51.4978; -0.1594AmbassadorSturla Sigurjónsson The Embassy of Iceland in London is the diplomatic mission of Iceland in the United Kingdom.[1] It occupies a large, modern building designed by Danish architect Arne Jacobsen which it shares with the Embassy of Denmark, completed in 1977. There has been ...

 

Rangkong Rangkong Papan Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Bucerotiformes Famili: 'BucerotidaeRafinesque, 1815 Genus: 13 genus Lihat teks Spesies: 59 spesies Lihat teks Distribusi burung rangkong Rangkong Sulawesi (Rhyticeros cassidix) di Cagar Alam Gunung Tangkoko Batuangus, Sulawesi Utara. Rangkong, Enggang, Julang, Kangkareng (bahasa Inggris: Hornbill) adalah sejenis burung yang mempunyai paruh berbentuk tanduk sapi tetapi tanpa lingkaran. Biasanya paru...

Method of biological warfare Entomological warfare (EW) is a type of biological warfare that uses insects to interrupt supply lines by damaging crops, or to directly harm enemy combatants and civilian populations. There have been several programs which have attempted to institute this methodology; however, there has been limited application of entomological warfare against military or civilian targets, Japan being the only state known to have verifiably implemented the method against another ...

 

DiMartino di San Diego Comic-Con International 2012. Michael Dante DiMartino adalah seorang sutradara animasi Amerika terbaik yang dikenal sebagai wakil pembuat, eksekutif produser, dan penyunting cerita serial TV animasi Avatar: The Legend of Aang dan The Legend of Korra, di bawah naungan Nickelodeon. Ia lahir di Shelburne, Vermont.[1] Ia bersekolah di Sekolah Desain Rhode Island dengan Bryan Konietzko, bersamanya ia membuat Avatar. Sebelum Avatar, Mike bekerja selama dua belas tahun...

 

Dieser Artikel beschreibt den Zustand ohne Krieg. Für den Raddampfer mit demselben Namen siehe Weltfrieden (Schiff). Dieser Artikel oder Abschnitt bedarf einer grundsätzlichen Überarbeitung. Näheres sollte auf der Diskussionsseite angegeben sein. Bitte hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten...

  关于与「上海迎宾高速公路」標題相近或相同的条目,請見「A1公路」。 上海迎宾高速公路 迎宾高速 道路信息道路總長12公里(7英里)启用时间1999年9月14日(最近通車)主要连接道路起點端 沪芦高速 外环高速环东二大道枢纽9处出口終點端上海浦东国际机场公路系統中华人民共和国高速公路上海高速公路 上海迎宾高速公路,是上海市的一条高速公路,省高...

 

Overview of music traditions in the U.S. state of California This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Music of California – news · newspapers · books · scholar · JSTOR (February 2014) (Learn how and when to remove this template message) Music of the United States AK AL AR AS AZ CA CO CT DC DE FL GA GU...

 

Castle in Cassano d'Adda, Italy Visconti Castle (Cassano d'Adda)Castello Visconteo di Cassano d'AddaCassano d'Adda, Lombardy, Northern Italy The Visconti Castle seen from the Adda riverVisconti Castle (Cassano d'Adda)Coordinates45°31′32″N 9°31′27″E / 45.52556°N 9.52417°E / 45.52556; 9.52417TypeMedieval castleSite informationOwnerPrivateOpen tothe publicYes, as hotel guestConditionGoodSite historyBuiltBefore the 14h centuryBuilt byBernabò Vis...

Bendera Bahama Pemakaian Bendera nasional Perbandingan 1:2 Dipakai 10 Juli 1973 Rancangan Triwarna mendatar berwarna biru, putih, biru; dan segitiga berwarna hitam di kiri. Perancang Dr. Hervis Bain Varian bendera Bendera Bahama Pemakaian Bendera kapal sipil Perbandingan 1:2 Varian bendera Bendera Bahama Pemakaian Bendera kapal negara Perbandingan 1:2 Varian bendera Bendera Bahama Pemakaian Bendera kapal perang Perbandingan 1:2 Bendera Bahama ini dipakai oleh pemerintahan sejak tanggal 10 Jul...

 

You can help expand this article with text translated from the corresponding article in German. (March 2018) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedi...

 

President of the United States since 2021 Joseph Biden and Biden redirect here. For his son, Joseph Biden III, see Beau Biden. For other uses, see Biden (disambiguation). Joe BidenOfficial portrait, 202146th President of the United StatesIncumbentAssumed office January 20, 2021Vice PresidentKamala HarrisPreceded byDonald Trump47th Vice President of the United StatesIn officeJanuary 20, 2009 – January 20, 2017PresidentBarack ObamaPreceded byDick CheneySucceeded byMike Pe...

British champion National Hunt racing jockey and horse trainer Fred RimellOccupationJockey, TrainerBorn(1913-06-24)24 June 1913Died12 July 1981(1981-07-12) (aged 68)Significant horsesESB, Nicolaus Silver, Gay Trip, Rag Trade Thomas Frederic Rimell[1] (24 June 1913 – 12 July 1981), better known as Fred Rimell, was a British champion National Hunt racing jockey and horse trainer. He was champion jockey three times and leading trainer five times. Rimell was the first jumping ...

 

1998 film awards 3rd Critics' Choice Movie AwardsDateJanuary 20, 1998Official websitewww.criticschoice.comHighlightsBest FilmL.A. Confidential ← 2nd Critics' Choice Movie Awards 4th → The 3rd Critics' Choice Movie Awards were presented on January 20, 1998, honoring the finest achievements of 1997 filmmaking.[1] Top 10 films (in alphabetical order) Amistad As Good as It Gets Boogie Nights Donnie Brasco The Full Monty Good Will Hunting L.A. Confidential Titanic Wag...

 

Mosque and former church in Istanbul, Turkey Several terms redirect here. For other uses, see Hagia Sophia (disambiguation), List of churches dedicated to Holy Wisdom, and Sophia of Rome#Churches. Hagia SophiaAyasofya (Turkish) Ἁγία Σοφία (Greek)Sancta Sapientia (Latin)Hagia Sophia was built in 537, with minarets added in the 15th–16th centuries when it became a mosque.[1]41°00′30″N 28°58′48″E / 41.00833°N 28.98000...

This article is about the botanical genus. For other uses, see Carissa (disambiguation). Genus of plants Carissa Natal Plum (C. macrocarpa) Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Gentianales Family: Apocynaceae Tribe: Carisseae Genus: CarissaL. Synonyms[1] Antura Forssk. Arduina Mill. Carandas Rumph. ex Adans. Jasminonerium Wolf Leioclusia Baill. Carissa bispinosa, thorns and flowers Conkerberry (C. spi...

 

Dark-colored, fine-grained, non-granitic intrusive or extrusive igneous rock For other uses, see Traprock (disambiguation). The East Rock trap rock ridge overlooking New Haven, Connecticut, U.S. Trap rock forming a characteristic pavement, Giant's Causeway and Northern Ireland Trap rock cliff overlooking the Hudson River from an overlook on the Hudson Palisades in Bergen County, New Jersey, U.S. Trap rock forming a characteristic stockade wall, Giant's Causeway, Northern Ireland Trap rock, al...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!