Ddbar lemma

In complex geometry, the lemma (pronounced ddbar lemma) is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .[1]: 1.17 [2]: Lem 5.50 

Statement

The lemma asserts that if is a compact Kähler manifold and is a complex differential form of bidegree (p,q) (with ) whose class is zero in de Rham cohomology, then there exists a form of bidegree (p-1,q-1) such that

where and are the Dolbeault operators of the complex manifold .[3]: Ch VI Lem 8.6 

ddbar potential

The form is called the -potential of . The inclusion of the factor ensures that is a real differential operator, that is if is a differential form with real coefficients, then so is .

This lemma should be compared to the notion of an exact differential form in de Rham cohomology. In particular if is a closed differential k-form (on any smooth manifold) whose class is zero in de Rham cohomology, then for some differential (k-1)-form called the -potential (or just potential) of , where is the exterior derivative. Indeed, since the Dolbeault operators sum to give the exterior derivative and square to give zero , the -lemma implies that , refining the -potential to the -potential in the setting of compact Kähler manifolds.

Proof

The -lemma is a consequence of Hodge theory applied to a compact Kähler manifold.[3][1]: 41–44 [2]: 73–77 

The Hodge theorem for an elliptic complex may be applied to any of the operators and respectively to their Laplace operators . To these operators one can define spaces of harmonic differential forms given by the kernels:

The Hodge decomposition theorem asserts that there are three orthogonal decompositions associated to these spaces of harmonic forms, given by

where are the formal adjoints of with respect to the Riemannian metric of the Kähler manifold, respectively.[4]: Thm. 3.2.8  These decompositions hold separately on any compact complex manifold. The importance of the manifold being Kähler is that there is a relationship between the Laplacians of and hence of the orthogonal decompositions above. In particular on a compact Kähler manifold

which implies an orthogonal decomposition

where there are the further relations relating the spaces of and -harmonic forms.[4]: Prop. 3.1.12 

As a result of the above decompositions, one can prove the following lemma.

Lemma (-lemma)[3]: 311  — Let be a -closed (p,q)-form on a compact Kähler manifold . Then the following are equivalent:

  1. is -exact.
  2. is -exact.
  3. is -exact.
  4. is -exact. That is there exists such that .
  5. is orthogonal to .

The proof is as follows.[4]: Cor. 3.2.10  Let be a closed (p,q)-form on a compact Kähler manifold . It follows quickly that (d) implies (a), (b), and (c). Moreover, the orthogonal decompositions above imply that any of (a), (b), or (c) imply (e). Therefore, the main difficulty is to show that (e) implies (d).

To that end, suppose that is orthogonal to the subspace . Then . Since is -closed and , it is also -closed (that is ). If where and is contained in then since this sum is from an orthogonal decomposition with respect to the inner product induced by the Riemannian metric,

or in other words and . Thus it is the case that . This allows us to write for some differential form . Applying the Hodge decomposition for to ,

where is -harmonic, and . The equality implies that is also -harmonic and therefore . Thus . However, since is -closed, it is also -closed. Then using a similar trick to above,

also applying the Kähler identity that . Thus and setting produces the -potential.

Local version

A local version of the -lemma holds and can be proven without the need to appeal to the Hodge decomposition theorem.[4]: Ex 1.3.3, Rmk 3.2.11  It is the analogue of the Poincaré lemma or Dolbeault–Grothendieck lemma for the operator. The local -lemma holds over any domain on which the aforementioned lemmas hold.

Lemma (Local -lemma) — Let be a complex manifold and be a differential form of bidegree (p,q) for . Then is -closed if and only if for every point there exists an open neighbourhood containing and a differential form such that on .

The proof follows quickly from the aforementioned lemmas. Firstly observe that if is locally of the form for some then because , , and . On the other hand, suppose is -closed. Then by the Poincaré lemma there exists an open neighbourhood of any point and a form such that . Now writing for and note that and comparing the bidegrees of the forms in implies that and and that . After possibly shrinking the size of the open neighbourhood , the Dolbeault–Grothendieck lemma may be applied to and (the latter because ) to obtain local forms such that and . Noting then that this completes the proof as where .

Bott–Chern cohomology

The Bott–Chern cohomology is a cohomology theory for compact complex manifolds which depends on the operators and , and measures the extent to which the -lemma fails to hold. In particular when a compact complex manifold is a Kähler manifold, the Bott–Chern cohomology is isomorphic to the Dolbeault cohomology, but in general it contains more information.

The Bott–Chern cohomology groups of a compact complex manifold[3] are defined by

Since a differential form which is both and -closed is -closed, there is a natural map from Bott–Chern cohomology groups to de Rham cohomology groups. There are also maps to the and Dolbeault cohomology groups . When the manifold satisfies the -lemma, for example if it is a compact Kähler manifold, then the above maps from Bott–Chern cohomology to Dolbeault cohomology are isomorphisms, and furthermore the map from Bott–Chern cohomology to de Rham cohomology is injective.[5] As a consequence, there is an isomorphism

whenever satisfies the -lemma. In this way, the kernel of the maps above measure the failure of the manifold to satisfy the lemma, and in particular measure the failure of to be a Kähler manifold.

Consequences for bidegree (1,1)

The most significant consequence of the -lemma occurs when the complex differential form has bidegree (1,1). In this case the lemma states that an exact differential form has a -potential given by a smooth function :

In particular this occurs in the case where is a Kähler form restricted to a small open subset of a Kähler manifold (this case follows from the local version of the lemma), where the aforementioned Poincaré lemma ensures that it is an exact differential form. This leads to the notion of a Kähler potential, a locally defined function which completely specifies the Kähler form. Another important case is when is the difference of two Kähler forms which are in the same de Rham cohomology class . In this case in de Rham cohomology so the -lemma applies. By allowing (differences of) Kähler forms to be completely described using a single function, which is automatically a plurisubharmonic function, the study of compact Kähler manifolds can be undertaken using techniques of pluripotential theory, for which many analytical tools are available. For example, the -lemma is used to rephrase the Kähler–Einstein equation in terms of potentials, transforming it into a complex Monge–Ampère equation for the Kähler potential.

ddbar manifolds

Complex manifolds which are not necessarily Kähler but still happen to satisfy the -lemma are known as -manifolds. For example, compact complex manifolds which are Fujiki class C satisfy the -lemma but are not necessarily Kähler.[5]

See also

References

  1. ^ a b Gauduchon, P. (2010). "Elements of Kähler geometry". Calabi's extremal Kähler metrics: An elementary introduction (Preprint).
  2. ^ a b Ballmann, Werner (2006). Lectures on Kähler Manifolds. European mathematical society. doi:10.4171/025. ISBN 978-3-03719-025-8.
  3. ^ a b c d Demailly, Jean-Pierre (2012). Analytic Methods in Algebraic Geometry. Somerville, MA: International Press. ISBN 9781571462343.
  4. ^ a b c d Huybrechts, D. (2005). Complex Geometry. Universitext. Berlin: Springer. doi:10.1007/b137952. ISBN 3-540-21290-6.
  5. ^ a b Angella, Daniele; Tomassini, Adriano (2013). "On the -Lemma and Bott-Chern cohomology". Inventiones Mathematicae. 192: 71–81. arXiv:1402.1954. doi:10.1007/s00222-012-0406-3. S2CID 253747048.

Read other articles:

У этого термина существуют и другие значения, см. Сатанизм (значения). Бафомет Сигил Бафомета — официальный символ Церкви Сатаны Сатани́зм, дьяволома́ния[1][2][3], дьяволопокло́нничество[4] — ряд оккультно-религиозных представлений[1], мировоззрени

 

Mazmur 124Naskah Gulungan Mazmur 11Q5 di antara Naskah Laut Mati memuat salinan sejumlah besar mazmur Alkitab yang diperkirakan dibuat pada abad ke-2 SM.KitabKitab MazmurKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen19← Mazmur 123 Mazmur 125 → Mazmur 124 (disingkat Maz 124 atau Mz 124; penomoran Septuaginta: Mazmur 123) adalah sebuah mazmur dalam bagian ke-5 Kitab Mazmur di Alkitab Ibrani dan Perjanjian Lama dalam Alkitab Kristen. Digubah oleh Daud.&...

 

Botswana beauty pageant titleholder Tsaone MachengBornTsaone Macheng (1989-11-24) November 24, 1989 (age 34)Gaborone, BotswanaHeight1.70 m (5 ft 7 in)Beauty pageant titleholderTitleMiss Universe Botswana 2013Hair colorBlackMajorcompetition(s)Miss Universe Botswana 2013(Winner)Miss Universe 2013(Unplaced) Tsaone Macheng (born on November 24, 1989) is a Motswana beauty pageant titleholder who was crowned Miss Universe Botswana 2013, was represented Botswana at the Miss Unive...

American home services directory website Not to be confused with Annie's List. This article is about the website. For the Davey Graham instrumental, see Anji (instrumental). For the parent company, see Angi Inc. AngiFounded1995HeadquartersIndianapolis, IndianaOwnerAngi Inc.Founder(s)William S. Oesterle, Angie HicksKey peopleJoey Levin, CEO[1] Angie Hicks, CCOIndustryContract marketplaceURLwww.angi.com Angi (formerly Angie's List) is an American home services website owned by Angi...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2016) برينس رودني معلومات شخصية الميلاد 31 أكتوبر 1958 (العمر 65 سنة)لندن الجنسية بريطاني الوزن وزن خفيف المتوسط الحياة العملية المهنة ملاكم[1]  نوع الرياضة المل

 

Pour les articles homonymes, voir Les Bronzés (homonymie). Les Bronzés Logo du film. Données clés Titre original Les Bronzés Réalisation Patrice Leconte Scénario La troupe du Splendid Patrice Leconte Acteurs principaux Josiane Balasko Michel Blanc Marie-Anne Chazel Christian Clavier Gérard Jugnot Thierry Lhermitte Sociétés de production Trinacra Films Pays de production France Genre Comédie Durée 98 minutes Sortie 1978 Série Les Bronzés Les Bronzés font du ski(1979) Pour p...

Albert Schweitzer (14 Januari 1875 – 4 September 1965) adalah seorang teolog, musikus, filsuf dan dokter yang berdarah Alsace. Ia lahir di Kaisersberg, Alsace-Lorraine yang pada waktu itu masih merupakan bagian dari Kekaisaran Jerman. Setelah kemenangan Sekutu dalam Perang Dunia I pada tahun 1918, ia mengubah kewarganegaraannya menjadi Prancis berdasarkan garis keturunan Alsacenya. Perangko yang menampilkan wajah Albert Schweitzer Schweitzer mengajukan argumen-argumen tantanga...

 

2008 film by Ridley Scott Body of LiesTheatrical release posterDirected byRidley ScottScreenplay byWilliam MonahanBased onBody of Liesby David IgnatiusProduced by Ridley Scott Donald De Line Starring Leonardo DiCaprio Russell Crowe Mark Strong Golshifteh Farahani Oscar Isaac Simon McBurney CinematographyAlexander WittEdited byPietro ScaliaMusic byMarc StreitenfeldProductioncompanies Scott Free Productions De Line Pictures Distributed byWarner Bros. PicturesRelease date October 10, 2...

 

Programming language The correct title of this article is C#. The substitution of the # is due to technical restrictions. C#ParadigmMulti-paradigm: structured, imperative, object-oriented, event-driven, task-driven, functional, generic, reflective, concurrentFamilyCDesigned byAnders Hejlsberg (Microsoft)DeveloperMads Torgersen (Microsoft)First appeared2000; 23 years ago (2000)[1]Stable release12.0[2]  / 14 November 2023; 22 days ago...

1990 studio album by Jello Biafra & D.O.A.Last Scream of the Missing NeighborsStudio album by Jello Biafra & D.O.A.Released1990Genre Punk rock hardcore punk Length29:06LabelAlternative Tentacles[1]ProducerJello Biafra, Cecil EnglishJello Biafra chronology High Priest of Harmful Matter: Tales From the Trial(1989) Last Scream of the Missing Neighbors(1990) I Blow Minds for a Living(1991) D.O.A. chronology True (North) Strong And Free(1987) Last Scream of the Missing Neig...

 

Dahab IslandNative name: ‏‏جزيرة الذهبNorthern part of Dahab Island with al-Munib bridge in the backgroundDahab IslandLocation in EgyptGeographyLocationNile RiverCoordinates29°58′55″N 31°13′26″E / 29.982°N 31.224°E / 29.982; 31.224Adjacent toNileLength4,200 m (13800 ft)AdministrationEgypt View from Dahab Island; Dahab Island (or: Gazirat edh-Dhahab, Arabic: ‏جزيرة الذهب, Ǧazīrat aḏ-Ḏahab, Island of Gold)...

 

2004 novel by Jacek Dukaj For the Chinese film, see Perfect Imperfection (film). Perfekcyjna niedoskonałość. Pierwsza tercja Progresu Polish edition cover.AuthorJacek DukajOriginal titlePerfekcyjna niedoskonałość. Pierwsza tercja ProgresuTranslatornot translatedCover artistTomasz BagińskiCountryPolandLanguagePolishGenrehard science fictionPublisherWydawnictwo LiterackiePublication date2004Pages456ISBN83-08-03647-3OCLC60361233LC ClassPG7163.U4 P47 2004 Perfect Imperfectio...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: ASDP Indonesia Ferry – news · newspapers · books · scholar · JSTOR (August 2020) (Learn how and when to remove this template message) PT ASDP Indonesia Ferry (Persero)ASDP Indonesia Ferry headquarters in JakartaFormerlyPerum ASDP (1986-1992)PT ASDP (1992-2004)T...

 

Artist, engineer, polymath Jonty HurwitzJonty HurwitzBorn (1969-09-03) 3 September 1969 (age 54)Johannesburg, South AfricaNationalitySouth AfricanEducationUniversity of the WitwatersrandUniversity of Cape TownKnown forSculpture and Financial TechnologyWebsitejonty.art Jonty Hurwitz (born 2 September 1969 in Johannesburg) is a British South African artist, engineer and entrepreneur.[1] Hurwitz creates scientifically inspired artworks and anamorphic sculptures.[2] He i...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2022) كاساسولا دي أريون   الاسم الرسمي (بالإسبانية: Casasola de Arión)‏[1]    الإحداثيات 41°34′39″N 5°14′26″W / 41.5775°N 5.2405555555556°W / 41.5775; -5.2405555555556  [2&#...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sentul Timur LRT station – news · newspapers · books · scholar · JSTOR (July 2010) (Learn how and when to remove this template message)  AG1   SP1  Sentul Timur | LRT stationPlatform view of the station.General informationOther names冼都...

 

Contea di WilsonconteaContea di Wilson – VedutaTribunale della contea, situato nel suo capoluogo, Floresville LocalizzazioneStato Stati Uniti Stato federato Texas AmministrazioneCapoluogoFloresville Data di istituzione1874 TerritorioCoordinatedel capoluogo29°10′12″N 98°05′24″W / 29.17°N 98.09°W29.17; -98.09 (Contea di Wilson)Coordinate: 29°10′12″N 98°05′24″W / 29.17°N 98.09°W29.17; -98.09 (Contea di Wilson) Superficie2&#...

 

Azis GagapAzis pada tahun 2023LahirMuhammad Azis22 Desember 1973 (umur 50)Jakarta, IndonesiaKebangsaanIndonesiaNama lainAzis GagapPekerjaanPemeranpelawakTahun aktif1991—sekarangSuami/istri Nurhasanah Dewi Keke ​(m. 2016)​ Anak3 Muhammad Azis dikenal sebagai Azis Gagap (lahir 22 Desember 1973) adalah pemeran dan pelawak Indonesia. Karier Azis mengawali karier melawak melalui panggung lenong dari satu kelurahan ke kelurahan lain.[1] Selanju...

Desi BoyzPoster rilis teatrikalSutradaraRohit DhawanProduserKrishika LullaVijay AhujaJyoti DeshpandeDitulis olehRenuka KunzruMilap ZaveriSkenarioRohit DhawanCeritaRohit DhawanPemeranAkshay KumarJohn AbrahamDeepika PadukoneChitrangada SinghAnupam KherSanjay DuttOmi VaidyaShraman JainPenata musikLagu:PritamMusik Latar:Sandeep ShirodkarSinematograferNatarajan SubramaniamPenyuntingNitin MadhukarDistributorEros InternationalTanggal rilis 25 November 2011 (2011-11-25) Durasi121 menitNega...

 

Ekspansi Norman pada tahun 1130 Orang Norman (dalam bahasa Prancis: Normands; bahasa Latin Nortmanni; bahasa Jerman: Normannen) adalah kelompok etnik[1] yang merupakan keturunan penakluk Viking di wilayah Franka.[2] Identitas mereka muncul pada awal pertengahan abad ke-10, dan pelan-pelan berkembang. Norman merupakan asal dari nama wilayah Normandy di Prancis bagian utara. Mereka memainkan peran politik, militer, dan budaya yang penting di Eropa abad pertengahan dan Timur Deka...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!